
Verus: A Practical Foundation for Systems Verification
SOSP’24 Accepted Paper (Draft in Shepherding)

Andrea Lattuada*

MPI-SWS
Saarbrücken, Germany

Travis Hance
Carnegie Mellon University
Pittsburgh, PA, United States

Jay Bosamiya†

Microsoft Research
Redmond, WA, United States

Matthias Brun
ETH Zurich

Zürich, Switzerland

Chanhee Cho
Carnegie Mellon University
Pittsburgh, PA, United States

Hayley LeBlanc
University of Texas at Austin

Austin, TX, United States

Pranav Srinivasan
University of Michigan

Ann Arbor, MI, United States

Reto Achermann
University of British Columbia

Vancouver, BC, Canada

Tej Chajed
University of Wisconsin-Madison

Madison, WI, United States

Chris Hawblitzel
Microsoft Research

Redmond, WA, United States

Jon Howell
VMware Research

Bellevue, WA, United States

Jacob R. Lorch
Microsoft Research

Redmond, WA, United States

Oded Padon*

Weizmann Institute of Science
Rehovot, Israel

Bryan Parno
Carnegie Mellon University
Pittsburgh, PA, United States

Abstract

Formal verification is a promising approach to eliminate bugs
at compile time, before they ship. Indeed, our community
has verified a wide variety of system software. However,
much of this success has required heroic developer effort,
relied on bespoke logics for individual domains, or sacrificed
expressiveness for powerful proof automation.

Building on prior work on Verus, we aim to enable faster,
cheaper verification of rich properties for realistic systems.
We do so by integrating and optimizing the best choices from
prior systems, tuning our design to overcome barriers encoun-
tered in those systems, and introducing novel techniques.

We evaluate Verus’s effectiveness with a wide variety of
case-study systems, including distributed systems, an OS page
table, a library for NUMA-aware concurrent data structure
replication, a crash-safe storage system, and a concurrent
memory allocator, together comprising 6.1K lines of imple-
mentation and 31K lines of proof. Verus verifies code 3–61×
faster and with less effort than the state of the art.

Our results suggest that Verus offers a platform for explor-
ing the next frontiers in system-verification research. Because
Verus builds on Rust, Verus is also positioned for wider use
in production by developers who have already adopted Rust
in the pursuit of more robust systems.

*Work done while at VMware Research.
†Work done while at Carnegie Mellon University.

1 Introduction
Society increasingly counts on the correctness, reliability,
and security of system software, i.e., fundamental software
infrastructure that includes file systems, operating systems,
databases, memory allocators, and libraries for cryptography
and distributed protocols. Such software is often inherently
low-level (e.g., manipulating raw bytes, interfacing directly
with devices, or operating without a garbage collector), since
higher-level software depends on it for foundational abstrac-
tions, like unlimited virtual memory or reliable operation.
System software must also hit stringent performance targets,
since it sits on the critical path for the software above it. How-
ever, performance optimizations, especially those involving
concurrency, add complexity. Unsurprisingly, these systems
are notoriously difficult to get right.

Formally verifying software is a promising approach for
ensuring its correctness and reliability. Indeed, our commu-
nity has seen a series of successful demonstrations verifying
a wide variety of system software (§5). However, much of
this success has required heroic developer effort, relied on be-
spoke logics for individual domains (e.g., crash safety [1–3]),
or sacrificed expressiveness for powerful automation [1, 4–9].

In our work, we aim to enable faster, easier verification of
rich properties for realistic systems. We do so by integrating
and optimizing the best choices from prior systems, tuning
our design to overcome barriers they encountered, and intro-
ducing novel techniques to simplify concurrency reasoning.

We integrate our work into a tool called Verus, which is
designed to verify Rust code. Early work [10] on Verus fo-
cused on designing and formalizing techniques for generating

1

https://orcid.org/0000-0002-9303-452X
https://orcid.org/0009-0003-1104-7795
https://orcid.org/0000-0002-5596-6828
https://orcid.org/0009-0004-5349-4347
https://orcid.org/0009-0009-6620-9070
https://orcid.org/0000-0003-3680-496X
https://orcid.org/0009-0008-7162-5442
https://orcid.org/0000-0003-3263-7236
https://orcid.org/0000-0002-9889-4828
https://orcid.org/0000-0002-5676-0362
https://orcid.org/0000-0002-1781-2473
https://orcid.org/0000-0002-7269-2769
https://orcid.org/0009-0006-4209-1635
https://orcid.org/0000-0002-9113-1684

verification queries for both safe and unsafe Rust code. In
this work, we describe our efforts to make Verus a powerful
framework for system verification, and we evaluate our new
system-relevant features in systems code (see §5 for a deeper
comparison). Our ambition is two-fold: first, to make Verus
a foundation for exploring the next frontier in system verifi-
cation research, and second, to open system verification to
a broad community of developers without deep verification
expertise.

Core to Verus is the acknowledgment that verifying system
software entails many kinds of reasoning at many different
levels of abstraction (§2), from low-level details of memory
access and bit manipulation, to the high-level challenges of
defining and proving that a file system is crash-safe or that
a distributed system achieves consensus. Rather than tackle
this complexity with a single generic solution, Verus carefully
organizes proof obligations in a way that plays to the strengths
of various proof automation strategies, and hence minimizes
developer effort.

Across all proof levels, Verus integrates two powerful rea-
soning techniques. By default, it provides aggressively op-
timized versions of general-purpose, semi-automated proof
techniques (§3.1) that have shown success in one line of veri-
fied systems [11–16]. For portions of the system that can be
described in EPR [17], a restricted logic, Verus shows how to
soundly integrate another line of work [7, 8, 18–22] so proofs
of these portions are fully automated (§3.2).

Verus also includes custom automation for reasoning chal-
lenges at specific levels in real systems. For example, certain
coding idioms like bit manipulation and nonlinear arithmetic
confound prior tools; our Verus extensions add dedicated
support for such idioms (§3.3). Real systems also exploit
shared-memory concurrency, so we extend Verus (§3.4) to
allow a developer to describe a plan for sharding state across
threads, show that threads locally obey the plan, and create
invariants about the global program state from the plan.

Evaluating a new general-purpose system verification frame-
work is challenging, given that entire papers have been de-
voted to verifying a single system. Hence we adopt a multi-
level evaluation. We start with a set of verification “mil-
libenchmarks”: programs we verify in Verus and in five com-
parable tools. This helps us assess the impact of Verus’s de-
sign decisions on verification performance in examples small
enough to analyze in some detail.

We then show that the benefits seen at small scale extend
to larger systems by porting the specifications, code, and
proofs from several prior large-scale verification efforts to
Verus and comparing the developer experience in terms of
verification time and developer effort. These case studies
include a distributed system client and a library that creates a
linearizable NUMA-aware concurrent data structure from a
black-box sequential one.

Of course, starting from correct code and successful proofs
is overly optimistic, so we also evaluate similar metrics as

we verify three new system components from scratch, in-
cluding an OS page table, a concurrent memory allocator,
and a storage system designed for production. While our re-
sults are positive,1 the ultimate evaluation will come from
future projects using Verus to verify systems at new levels
of scale and complexity. Indeed, other research groups have
already used Verus to produce verified cluster-management
controllers [23], a verified microkernel [24], a security mod-
ule for confidential VMs [25], and to verify LLM-produced
code [26].

Any verification result is limited by its TCB. Verus’s results
depend on the correctness of the top-level specifications, the
Verus verifier, the solvers it relies on, and the Rust compiler.

In summary, we:

• Present the systems-relevant aspects of Verus’s design
(§3), unifying prior approaches in a single framework and
simplifying system proofs via novel techniques.

• Show how to soundly provide the proof-free automation
achieved by prior work [7, 8, 18–22] without sacrificing
expressiveness or developer freedom.

• Describe VerusSync, Verus’s new approach to allowing the
developer to reason about concurrent execution at the level
of the application, rather than the low-level mathematical
objects required by prior work [3, 27, 28]

• Evaluate Verus as a system verification language through
millibenchmarks and five case studies, producing over
6.1K lines of implementation and 31K lines of proof.
These case studies show how Verus’s features support
verifying a variety of systems for correctness and relia-
bility. Verus also produces verification results orders of
magnitude faster than prior automated tools.

2 Verus Overview: Verification for Systems
When constructing a complex system, developers typically
tame the complexity by thinking about the system at different
levels of abstraction. These range from low-level concerns
like memory safety to high-level concerns like crash safety.
Each level is challenging, but the ultimate challenge is ensur-
ing that all of the levels together produce a correct system.

As detailed in Figure 1, Verus helps developers with every
aspect of this reasoning. Below, we provide an overview of
Verus’s key features. Given space constraints, the subsequent
sections then provide more details on a selection of those fea-
tures. §4 evaluates the overall impact on system verification.

Cross-Layer Proof Automation. At the scale of com-
plexity in modern systems, encoding both the code and the
abstractions needed to reason about it in a mechanized form,
if done naively, can lead to huge proof obligations. Prior work
(§5) tries to tame the complexity of proving correctness by

1Verus is open source at https://github.com/verus-lang/verus, as are our
case studies (https://verus-lang.github.io/paper-sosp24-artifact/case-
studies). The artifact for the paper is available at https://verus-lang.github.
io/paper-sosp24-artifact/.

2

https://github.com/verus-lang/verus
https://verus-lang.github.io/paper-sosp24-artifact/case-studies
https://verus-lang.github.io/paper-sosp24-artifact/case-studies
https://verus-lang.github.io/paper-sosp24-artifact/
https://verus-lang.github.io/paper-sosp24-artifact/

§2 System-Level Reasoning
Specification

§3.3 System Idioms
fn parse()

{ ... }

fn scan()

{ ... }

fn loop()

{ ... }

fn recv()

{ ... }

fn iter()

{ ... }

Se
m

i-a
ut

om
at

ed
 (§

3.
1)

 a
nd

Fu
lly

 a
ut

om
at

ed
 (§

3.
2)

 R
ea

so
ni

ng

§3.4 Multi-Threading

§2 Memory Reasoning

Figure 1. Verus Overview. Verus offers powerful automated and
semi-automated reasoning techniques that apply to the full system
stack, as well as reasoning techniques tuned to specific stack levels.

sacrificing either automation or expressiveness. Verus instead
combines the best of both worlds, providing aggressively op-
timized, general-purpose, semi-automated proof techniques
(§3.1) that improve on prior widely-used tools, plus full proof
automation for special cases (§3.2).

Verus also includes reasoning techniques tuned for par-
ticular levels in the stack, smoothing out aspects of system
verification that prior work has struggled with.

Memory Reasoning. Rather than proving the memory
safety of system code via an expensive combination of man-
ual developer effort [29–31] and/or complex encodings [11,
32, 33], Verus stands on the shoulders of the Rust [34, 35]
community’s extensive work on ensuring safety through a
fast, deterministic type checker. Rust’s ownership-based type
checker enforces that only one variable has exclusive owner-
ship of any object at a time. Rust’s growing developer pop-
ulation and large-scale projects in the Linux kernel [36], at
Amazon [37], and at Google [38], validate that developers
can use Rust’s types to verify memory safety for real systems.

Rust includes an “escape hatch” that allows developers
to write explicitly labeled unsafe code, wherein the devel-
oper accepts the obligation to ensure the code’s safety, which
challenges even experts [39]. Fortunately, Verus can verify a
subset of unsafe Rust features [10], and it rejects usage of
features outside that subset. In this work, to support our case
studies (§4.2), we extended Verus’s support for raw pointers.

Hence, Verus gives programmers C-like freedom to man-
age and manipulate memory, and yet it automatically proves
memory safety of almost all such code.

System Idioms. At the next level, Verus includes reason-
ing techniques (§3.3) specifically designed for thorny system
idioms that the community’s experiences indicate are chal-
lenging to generically automate. These include bit manipula-
tion [12, 14, 40] and nonlinear arithmetic [12, 41, 42].

Multi-Threading. Higher up the stack, many systems
rely on concurrency for good performance, via local multi-
threaded execution. Concurrent execution makes verification
significantly more complex and automation challenging, since

both the verifier and the developer must now consider how
each thread interacts with every other thread.

Verus includes VerusSync (§3.4), a domain-specific lan-
guage for reasoning about multi-threaded code directly in
terms of the application’s logic, ultimately producing an ab-
straction of the application that encapsulates the complexity
of threads, locks, and other synchronization concerns.

System-Level Reasoning. At the top level, developers
often wish to prove more than the correctness of a program in
isolation; they want richer properties of the program executing
in a larger context. For example, a distributed system may run
several instances of the program; we want the whole system
to be reliable. A storage program interacts asynchronously
with an external disk; we want the system to be correct even
as the program crashes and restarts.

Extensive prior work [12, 13, 16, 27, 40] has demonstrated
the generality and effectiveness of modeling this system-level
reasoning in terms of atomic state machines [43] that cap-
ture system state and how it evolves, so Verus supports such
reasoning as a special case of VerusSync.

3 Key Aspects of Verus’s Design for Systems
Here we highlight several key ideas and design decisions that
enable Verus to support the verification of complex systems.

3.1 Streamlined, General-Purpose Automation

Motivation. Some of the largest verified system implemen-
tations [11–16] have relied on semi-automated program ver-
ifiers like VCC [11], Dafny [32], or F★ [33]. Compared to
theorem provers [29, 30], these tools are explicitly designed to
verify programs as opposed to general math theorems. While
they sacrifice expressivity compared with theorem provers,
they still include general-purpose reasoning techniques that al-
low them to be adapted to different settings. Most importantly,
they provide significant automation “out of the box”, typically
by converting the question of code (or proof) correctness into
a query to an SMT (Satisfiability Modulo Theories) solver
(e.g., Z3 [44]). The SMT solver then attempts to automatically
prove the query using a combination of fast satisfiability solv-
ing, specialized solvers for theories like integer arithmetic,
and heuristics for handling quantifiers. However, existing pro-
gram verifiers have struggled in the face of modern system
complexity, often forcing developers to break their code into
unnaturally small units and/or to tolerate long code-prove
cycles.

Our Approach. Verus’s default mode, used in the majority
of our proofs, is careful to utilize its underlying SMT solver
as efficiently as possible. To illustrate, Figure 2 shows a sim-
ple example of verifiable code written in Verus. The verus!
macro extends Rust with annotations to guide verification.
For example, the requires and ensures annotations in-
troduce pre- and postconditions that specify correctness for
executable Rust functions like pop. These specs refer to aux-
iliary spec functions, like the view function that abstracts

3

1 verus! {
2 pub struct LinkedList<V> {
3 head: Option<Box<Node<V>>>,
4 }
5
6 impl<V: VerusClone> LinkedList<V> {
7 pub spec fn view(self) -> Seq<V> ... { ... }
8 ...
9 pub fn pop(&mut self) -> (res: V)

10 requires old(self).view().len() > 0,
11 ensures res == old(self).view()[0] &&
12 self.view() == old(self).view().skip(1),
13 {
14 let h = self.head.take().unwrap();
15 self.head = h.next;
16 assert(self.view() =~= old(self).view().skip(1));
17 h.v
18 }
19 ...
20 }
21 } // verus!

Figure 2. Verus Example. pop removes the first element of a linked
list and returns it. Its requires says that pop can only be called
if the list is non-empty, and the ensures says that the returned
result is the list’s first value, and that it is removed from the list.

a concrete LinkedList implementation as a mathemati-
cal Seq. Internally, Verus employs standard Floyd-Hoare
logic [45, 46] to convert proof obligations, such as pop’s
postcondition into verification conditions to send to an SMT
solver. In our case, we query Z3 [44], which automatically
determines whether the formula holds for all possible inputs
to the function.

The approach of converting proof obligations to verifica-
tion conditions is standard in many verification frameworks,
but the details of language design and implementation have
a big effect on the efficiency of the SMT queries. We sum-
marize some of Verus’s key optimizations below. The net
effect is that Verus sends queries that are simpler and smaller
by orders of magnitude to the SMT solver, which translates
to significantly faster verification (Figure 9), so for a given
verification problem, Verus can provide a more efficient code-
prove cycle. Or conversely, given the same time budget as an
existing tool, Verus can tackle larger verification problems.

• Unlike specification functions in Dafny [32] and F★ [33],
Verus spec functions are pure, total mathematical functions
with no preconditions or (direct) access to the heap [10].
Thus they can be directly encoded as SMT functions with-
out the additional baggage of prior tools [32, 33]. As prior
work explains, Rust’s type system means that explicit heap-
based reasoning is rarely needed, and when it is needed, it
can be done through ghost memory permissions [10].

• Verus soundly isolates reasoning about memory, bit vec-
tors, and nonlinear arithmetic from the main SMT queries,
avoiding complex interactions between different kinds of
reasoning in the SMT solver and speeding up the SMT
queries. We discuss some of these ideas in §3.3.

• When verifying each module in a given project, Verus
aggressively prunes the context sent to the SMT solver to
eliminate imported but unreachable definitions.

• To avoid excess instantiations of quantifiers (∀ and ∃) in
the SMT solver, Verus treats quantifiers more conserva-
tively than tools like Dafny [32] and F★ [33] (see below).
Quantifiers and SMT solving. Typical systems verifica-

tion projects use ∀ and ∃ quantifiers, for example to specify all
elements of an array or all members of a table. Unfortunately,
SMT solving with quantifiers is undecidable in general, so
SMT solvers use heuristics to decide how to instantiate ∀
quantifiers and how to prove ∃ quantifiers. Most large verifi-
cation projects based on SMT solvers use an SMT heuristic
based on “triggers” [47], in which the SMT solver pattern
matches on expressions appearing in the formulas to deter-
mine how to instantiate quantifiers, for example, instantiat-
ing (∀|x : u64| . . .f(x). . .) with x = 3 if the expression
f(3) arises during the proof search. Here, the expression
f(x) is called the trigger (or pattern) for the quantifier.

Verification tools, including Verus, automatically select
appropriate expressions as triggers. However, the choice of
triggers has a large impact on verification performance. Prior
tools, like Dafny, default to selecting broad triggers that match
many expressions, leading to many quantifier instantiations;
in principle this creates more opportunities for the solver
to automatically complete a proof, but in practice, for large
systems projects, too many instantiations slow the SMT solver
to the point where it times out and fails to complete the proof.

Therefore, Verus uses a more cautious policy that selects
as few triggers as possible. If Verus is uncertain about the
best trigger, Verus encourages the user to review the selected
triggers and to consider overriding Verus’s default selection
with the user’s choice. The result is more initial effort for
users writing small projects, but better scalability to large
systems projects.

3.2 Selective Use of EPR for Full Automation

Motivation. Several prior works [1, 5–8] explicitly restrict
the expressivity of system properties and implementations
in order to obtain powerful proof automation. The developer
need only provide a little proof support, leading to remarkably
low proof-to-code ratios, e.g., Hyperkernel reports 0.03:1 [4].
The Ivy verification tool [7, 8] — built on EPR (effectively
propositional) logic [17] — demonstrates that despite reduced
expressivity, diverse system designs and implementations can
be encoded [9, 18, 48], yielding fully automated proofs and
even enabling invariant inference [19–22, 49].

While EPR leads to impressive proof automation, some
system components can be difficult to capture in EPR. EPR’s
first-order logic admits only Boolean operators, quantifiers,
and uninterpreted functions. For example, EPR can express
the property that a node sends at most one message per
epoch as ∀𝑚1,𝑚2 . sender(𝑚1) = sender(𝑚2) ∧ epoch(𝑚1) =
epoch(𝑚2) → 𝑚1 = 𝑚2. EPR cannot directly express many
common concepts such as sequences and natural numbers;
e.g., epoch(𝑚2) = 1 + epoch(𝑚1) is disallowed. Instead, nat-
ural numbers are typically abstracted as a totally ordered

4

DelegationMap
exec fn new
exec fn get
exec fn set

spec fn new

spec fn set
spec fn get

DelegationMapEPRModel

abstracts

DelegationMapEPRProof

spec fn invariant

proof fn get_post

#[epr_mode]

proof fn new_post

proof fn set_post

proves

(a)

(b)

(c)

(d)

us
es

Figure 3. Verifying the IronKV Delegation Map via EPR Mode.
The concrete implementation module (a) is abstracted to EPR (b)
to enable a fully-automated proof (c) of its invariants, which are
used (d) to prove the implementation’s correctness.

set without arithmetic operations. EPR further requires that
functions and quantifier-alternations are acyclic [18]; e.g., the
sender function above that maps messages to nodes precludes
both a function from nodes to messages and a property like
∀𝑛, 𝑒. 𝑒 < 𝑒𝑚𝑎𝑥 → ∃𝑚. sender(𝑚) = 𝑛 ∧ epoch(𝑚) = 𝑒.

In Ivy in order to obtain the benefits of EPR proof automa-
tion the entire entire system needs to be expressed in EPR,
including elements for which EPR is awkward. In contrast,
using a general-purpose tool (like Dafny or F*) avoids this
awkwardness but deos not offer the same level of automation,
even for parts of the proof where better automation may be
possible with EPR.

Our Approach. In Verus we obtain the best of both worlds
by soundly integrating EPR proofs with Verus’s general-
purpose semi-automation; we use the latter for most parts
of the system, and apply EPR to those proofs it best fits. The
main challenge in enabling seamless integration of EPR and
default-mode (trigger-based) automation is structuring proofs
to separate the EPR and non-EPR parts, and then compos-
ing them without adding trusted components. Overcoming
this challenge is enabled by Verus’s clean SMT encoding, its
constructs for partitioning proofs, and its ability to control
automation scoping.

To use EPR in Verus, a developer (a) defines a protocol or
a data structure without restrictions, (b) abstracts the protocol
or data structure into EPR, (c) uses Verus’s integrated EPR
solver for automatic, predictable proofs over the abstraction,
and (d) exports those proof results to the original definition
where they support postconditions and lemmas.

The connection between (a) and (b) is checked using
Verus’s default-mode automation, and in our experience is
easily discharged. Step (c) typically involves a set of com-
plex invariants that would have required significant manual
proof in default mode, but which Verus’s EPR mode resolves
automatically. The connection (d) back to the original proof
obligations for (a) is again easily checked in default mode.

We illustrate this process on the delegation map data struc-
ture from one of our case studies—the Verus port of IronKV
(§4.2.1). Originally written in Dafny for IronFleet [13], IronKV
is a distributed key-value store where each node maintains

a delegation map to associate each possible key to the host
responsible for it. For efficiency, the domain is stored as a
compact list of pivots that represent the key ranges. The dele-
gation map supports three operations:

new creates a map with all keys mapped to one host;
set maps a range of keys to a new host;
get retrieves the host responsible for a given key.

Figure 3 illustrates the components of the delegation map
and its EPR proof. First, (a) our DelegationMap data-
structure implements the new, get, and set operations in
regular Rust code with pre- and post-conditions expressed in
an unrestricted manner, similar to the Dafny original. Our (b)
DelegationMapEPRModel abstracts the data structure
and its operations into EPR. We then (c) write an inductive
invariant in EPR—DelegationMapEPRProof—to auto-
matically prove an EPR version of the postconditions of each
operation. Finally, we (d) use these proofs to discharge the
implementation’s proof obligations for new, get, and set.

The implementation of the delegation map uses natural
numbers for the keys. To express the proof in EPR we abstract
the keys as a totally ordered set. Verus trivially proves the
soundness of this abstraction, allowing the implementation to
invoke the EPR results.

The efficient list-of-pivots implementation leads to many
tricky corner cases, resulting in an extensive proof in the orig-
inal Dafny version. Our initial default-mode Verus proof was
also extensive; e.g., the set operation required ∼ 300 lines
of proof (mostly case splitting and assertions that instantiate
quantifiers) and took several days of developer effort. How-
ever, by abstracting the keys as a totally ordered set, the proof
can be expressed in Verus’s EPR mode, yielding much greater
proof automation. The developer still writes an inductive in-
variant, but the invariant is checked completely automatically,
similar to Ivy [7]. However, unlike in Ivy, the implementa-
tion’s pre- and post-conditions are expressed outside of EPR,
seamlessly integrating with the rest of IronKV.

At a technical level, the Verus developer marks individual
modules with the #[epr_mode] attribute, instructing Verus
to check that the module’s proof obligations are all within
EPR. Verus confirms that structs have private fields so they
act as uninterpreted types. It also checks acyclicity of the
quantifier-alternation graph [18]. Finally, Verus enables Z3’s
model-based quantifier instantiation, a complete (and often
fast) decision procedure for EPR. Due to technicalities of
Verus’s SMT encoding of polymorphic types, epr_mode
queries are not strictly in EPR, but we have not observed any
(correct) proofs that fail to verify automatically.

Our integration of EPR reasoning with a general-purpose
program verifier is enabled in part by Verus’s emphasis on
query economy (§3.1). Most program verifiers [11, 32, 33]
produce complex SMT queries even for simple programs, im-
mediately pushing them beyond EPR. In contrast, epr_mode’s
SMT encoding is quite close to Verus’s default mode.

5

Summarizing, for modules that fit in EPR, Verus provides
full automation, which prior work shows reduces developer ef-
fort by eliminating hundreds of lines of difficult proofs. Since
Verus soundly embeds EPR in a general-purpose verifier, de-
veloping in a restricted logic is no longer an all-or-nothing
choice; the developer can blend proof styles as needed. We
hope that the ability to seamlessly blend automation styles
will let researchers explore new strategies for verifying large
systems.

3.3 Custom Proof Automation for System Idioms

Motivation. To gain performance, systems employ various
“tricks” that are challenging to automate using generic tools.

Our Approach. Rather than feed every verification prob-
lem to a generalized SMT solver, Verus includes various
(trusted) automation tools, intuitively exposed to developers.
In each case, Verus checks the developer’s claim fully auto-
matically using custom automation; the SMT encoding then
simply assumes it is true.
NNNNNNNNNNNNNNNNNNNNNNoooooooooooooooooooooonnnnnnnnnnnnnnnnnnnnnn-lllllllllllllllllllllliiiiiiiiiiiiiiiiiiiiiinnnnnnnnnnnnnnnnnnnnnneeeeeeeeeeeeeeeeeeeeeeaaaaaaaaaaaaaaaaaaaaaar Ariiiiiiiiiiiiiiiiiiiiiitttttttttttttttttttttthhhhhhhhhhhhhhhhhhhhhhmmmmmmmmmmmmmmmmmmmmmmeeeeeeeeeeeeeeeeeeeeeettttttttttttttttttttttiiiiiiiiiiiiiiiiiiiiiicccccccccccccccccccccc Reeeeeeeeeeeeeeeeeeeeeeaaaaaaaaaaaaaaaaaaaaaassssssssssssssssssssssoooooooooooooooooooooonnnnnnnnnnnnnnnnnnnnnniiiiiiiiiiiiiiiiiiiiiinnnnnnnnnnnnnnnnnnnnnngggggggggggggggggggggg Systems often employ non-
linear arithmetic, i.e., formulas with terms like𝑤 ×𝑥 or 𝑦

𝑧
that

combine variables using operations beyond addition and sub-
traction. Such terms might relate adjacent page table entries
(§4.2.3) or indicate the bucket to use when allocating memory
(§4.2.4). Verus automates such reasoning in two ways.

First, while non-linear arithmetic is generally undecidable
(meaning no algorithm can solve all such formulas), sub-
classes are both decidable and fast in practice. Inspired by
others [50, 51], Verus supports fully automated proofs of
integer ring “congruence relations”—equalities built from +,
−, ×, %, and constant exponentiation—via annotation:
pub proof fn subtract_mod_eq_zero(a:int, b:int, c:int)
by(integer_ring)
requires a % c == 0, b % c == 0,
ensures (b - a) % c == 0 {}

Second, for problems outside decidable fragments, we en-
able the SMT solver’s nonlinear heuristics in a controlled
environment where they are more likely to succeed consis-
tently. Unlike normal Verus assertions, non-linear assertions
generate an isolated query without implicit context. In the ex-
ample below, even though we know from context that q > 2,
this fact is not automatically available in the assert and must
be provided as the premise of the implication. The extra de-
veloper burden provides greater predictability.
fn f(q: u64, a: u64) requires q > 2 {
assert(q > 2 ==> (a * a + 1) * q >= (a * a + 1) * 2)

by (nonlinear_arith);
}

Biiiiiiiiiiiiiiiiiiiiiitttttttttttttttttttttt-vvvvvvvvvvvvvvvvvvvvvveeeeeeeeeeeeeeeeeeeeeeccccccccccccccccccccccttttttttttttttttttttttoooooooooooooooooooooor Reeeeeeeeeeeeeeeeeeeeeeaaaaaaaaaaaaaaaaaaaaaassssssssssssssssssssssoooooooooooooooooooooonnnnnnnnnnnnnnnnnnnnnniiiiiiiiiiiiiiiiiiiiiinnnnnnnnnnnnnnnnnnnnnngggggggggggggggggggggg Low-level bit manipulation is common
in systems code, whether to optimize a logarithm estimate
via the count-leading-zeroes intrinsic or to manipulate flags
or bitmaps. Unfortunately, even tools that employ automated
solvers often struggle with such reasoning in the context of
complex system definitions. In particular, when the solver is
asked to reason simultaneously about integers for specifica-
tion purposes and bit vectors for optimizations, it often fails

or, worse, produces fragile proofs that succeed or fail based
on minor code perturbations [42].

Hence, multiple system verification projects have devel-
oped elaborate encoding styles and proof libraries to manu-
ally guide the theorem prover [12, 14, 40]. This eliminates
instability, but it leads to a significant developer burden, e.g.,
requiring tens of proof lines for a simple bit mask [52].

Verus instead carefully separates integer and bit-vector rea-
soning. Like most tools, Verus maps Rust’s integer types (e.g.,
u64) to SMT integers for interoperation with mathematical
specifications; it requires the developer to prove the absence
of overflow to ensure this is sound.

However, Verus also provides an annotation-invoked mode
that automatically interprets Rust’s integers as SMT bit vec-
tors when generating an SMT query, eliminating the manual
work required by prior projects [12, 14, 40]. Hence, a Verus
developer proves bit-manipulation properties by writing, e.g.,

assert(x & 511 == x % 512) by (bit_vector);

Inside the assertion, x is a bit vector, while outside it is treated
as an integer, allowing it to integrate with mathematical spec-
ifications and reliable SMT-based automation for linear arith-
metic. The result is that for the cost of a small annotation, the
Verus developer benefits from stable, automated proofs.
Prooffffffffffffffffffffff bbbbbbbbbbbbbbbbbbbbbbyyyyyyyyyyyyyyyyyyyyyy CCCCCCCCCCCCCCCCCCCCCCoooooooooooooooooooooommmmmmmmmmmmmmmmmmmmmmppppppppppppppppppppppuuuuuuuuuuuuuuuuuuuuuuttttttttttttttttttttttaaaaaaaaaaaaaaaaaaaaaattttttttttttttttttttttiiiiiiiiiiiiiiiiiiiiiioooooooooooooooooooooonnnnnnnnnnnnnnnnnnnnnn Some proof obligations have obvious,
statically computable answers. For example, in a previous
project, we tried to verify an efficient implementation of the
CRC-32 checksum that used a hard-coded lookup table of
precomputed data resulting from complicated polynomial-
division operations. Proving that the table resulted from this
computation required an excruciating number of proof annota-
tions to guide the solver. We eventually gave up and changed
our approach to avoid the hard-coded table.

In Verus, a developer can ask that a proof be discharged by
computation [53, 54]: A built-in symbolic interpreter simpli-
fies the expression and sends any remainder to SMT.
Maaaaaaaaaaaaaaaaaaaaaaccccccccccccccccccccccroooooooooooooooooooooo-bbbbbbbbbbbbbbbbbbbbbbaaaaaaaaaaaaaaaaaaaaaasssssssssssssssssssssseeeeeeeeeeeeeeeeeeeeeedddddddddddddddddddddd UUUUUUUUUUUUUUUUUUUUUUsssssssssssssssssssssseeeeeeeeeeeeeeeeeeeeeer-Deeeeeeeeeeeeeeeeeeeeeeffffffffffffffffffffffiiiiiiiiiiiiiiiiiiiiiinnnnnnnnnnnnnnnnnnnnnneeeeeeeeeeeeeeeeeeeeeedddddddddddddddddddddd Exxxxxxxxxxxxxxxxxxxxxxtttttttttttttttttttttteeeeeeeeeeeeeeeeeeeeeennnnnnnnnnnnnnnnnnnnnnssssssssssssssssssssssiiiiiiiiiiiiiiiiiiiiiibbbbbbbbbbbbbbbbbbbbbbiiiiiiiiiiiiiiiiiiiiiilllllllllllllllllllllliiiiiiiiiiiiiiiiiiiiiittttttttttttttttttttttyyyyyyyyyyyyyyyyyyyyyy Any non-trivial sys-
tems project eventually surfaces a repetitive pattern of tedious
proof; e.g., proofs that different datatypes can be unambigu-
ously marshalled into byte arrays (§4.2.1). Just as Rust devel-
opers exploit macros to reduce repetitive code, Verus devel-
opers can do the same to reduce repetitive proofs.

3.4 Automated Reasoning for Multi-Threading

Motivation. No framework for systems verification could be
complete without a story for multi-threading. Shared-memory
concurrency makes verification significantly more complex,
requiring reasoning about all possible thread interactions.
Rust’s memory safety guarantees extend to multi-threaded
code, as captured by its goal of “fearless concurrency.” How-
ever, it remains far from obvious how to cleanly prove full
correctness of concurrent systems.

Our Approach. Verus combines two big ideas.
6

1 // ------------------- VerusSync --------------------
2 fields {
3 #[sharding(variable)] pub a: int,
4 #[sharding(variable)] pub b: int,
5 }
6
7 init!{ initialize() {
8 init a = 0; init b = 0;
9 }}

10
11 transition!{ update(val: int) {
12 update a = val;
13 update b = val;
14 }}
15
16 property!{ agreement() { assert pre.a == pre.b; } }
17
18 #[invariant]
19 pub spec fn agreement_invariant(&self) -> bool {
20 self.a == self.b
21 }
22
23 // --------------- Agreement Protocol ---------------
24 type Agree;
25
26 fn init(val: int) -> (pair: (Agree, Agree))
27 ensures pair.0.id() == pair.1.id(),
28 pair.0.value() == val && pair.1.value() == val;
29
30 fn update(a:&mut Agree, b:&mut Agree, new_value:int)
31 requires old(a).id() == old(b).id(),
32 ensures a.id() == b.id(),
33 a.value() == val && b.value() == val;
34
35 fn agreement(a: &Agree, b: &Agree)
36 requires a.id() == b.id(),
37 ensures a.value() == b.value();

Figure 4. A Simple VerusSync Example of Keeping Two Values
In Agreement. Given the VerusSync code (top), Verus automat-
ically generates relevant proof obligations, such as the fact that
agreement_invariant is inductive; in this case Verus’s SMT
solver dispatches them without additional proof work. Once these
proofs succeed, Verus generates the relevant resource, the update
operation (update), and the proof result (agreement). The re-
sult is the agreement protocol interface (bottom part).

Iddddddddddddddddddddddeeeeeeeeeeeeeeeeeeeeeeaaaaaaaaaaaaaaaaaaaaaa I:::::::::::::::::::::: Reeeeeeeeeeeeeeeeeeeeeessssssssssssssssssssssoooooooooooooooooooooouuuuuuuuuuuuuuuuuuuuuurcccccccccccccccccccccceeeeeeeeeeeeeeeeeeeeee Allllllllllllllllllllllggggggggggggggggggggggeeeeeeeeeeeeeeeeeeeeeebbbbbbbbbbbbbbbbbbbbbbraaaaaaaaaaaaaaaaaaaaaassssssssssssssssssssss The first idea is something called
a resource algebra [55], a proven concept from concurrent
separation logic [56]. A resource algebra is a set of rules for
creating ghost resources, which can help maintain invariants
between objects owned by different threads.

As a simplified example, consider a program with two ob-
jects and a developer who wishes to maintain the invariant
that the objects both store the same value. Without verifica-
tion, the developer could informally enforce this invariant by
writing code that follows a protocol in which an update can
only be performed when both objects are held by the same
thread (as formalized in Figure 4 (bottom)). The protocol
intuitively enforces the invariant, but how can we prove it?
During times when the objects are owned by disjoint threads,
“who” maintains the invariant? The resource algebra solves
this problem, giving us a way to determine sound “update”
operations for given invariants.

Rust’s ownership types are a natural representation for own-
ership of resource algebra resources. In fact, this idea has been
employed before; IronSync [27] shows how to do it with the
ownership type system of Linear Dafny [16], and this in turn

inspired Verus’s ownership-based ghost types [10]. However,
the monoid-based mathematical formalism behind resource
algebras is quite technical; it takes considerable expertise to
interpret monoids in the context of a concurrent system. Thus,
deploying this idea in practical systems verification requires
a second big idea to streamline the process.
Iddddddddddddddddddddddeeeeeeeeeeeeeeeeeeeeeeaaaaaaaaaaaaaaaaaaaaaa II:::::::::::::::::::::: A SSSSSSSSSSSSSSSSSSSSSSppppppppppppppppppppppeeeeeeeeeeeeeeeeeeeeeecccccccccccccccccccccciiiiiiiiiiiiiiiiiiiiiiffffffffffffffffffffffiiiiiiiiiiiiiiiiiiiiiiccccccccccccccccccccccaaaaaaaaaaaaaaaaaaaaaattttttttttttttttttttttiiiiiiiiiiiiiiiiiiiiiioooooooooooooooooooooonnnnnnnnnnnnnnnnnnnnnn Laaaaaaaaaaaaaaaaaaaaaannnnnnnnnnnnnnnnnnnnnngggggggggggggggggggggguuuuuuuuuuuuuuuuuuuuuuaaaaaaaaaaaaaaaaaaaaaaggggggggggggggggggggggeeeeeeeeeeeeeeeeeeeeee ffffffffffffffffffffffoooooooooooooooooooooor Traaaaaaaaaaaaaaaaaaaaaannnnnnnnnnnnnnnnnnnnnnssssssssssssssssssssssiiiiiiiiiiiiiiiiiiiiiittttttttttttttttttttttiiiiiiiiiiiiiiiiiiiiiioooooooooooooooooooooonnnnnnnnnnnnnnnnnnnnnnssssssssssssssssssssss To enable
a practical, streamlined process for constructing the complex
ghost state needed for sophisticated concurrent algorithms,
we introduce a novel framework called VerusSync. To design
VerusSync, we first observe that a resource algebra update,
which exchanges one set of resources for another, is funda-
mentally a transition. We posit that state transitions are an
intuitive basis for reasoning about a system. However, in the
canonical resource algebra formulation, a developer derives
these transitions by a set of rules based on the compositional
monoid structure of a resource algebra, which is less intuitive
as a basis for system reasoning.

In VerusSync, therefore, we make transitions the central
object for reasoning. In a VerusSync system, the developer
specifies transitions up front, and thus VerusSync has special
syntax for transitions, based on the elegant state-transition
syntax in Ivy [7, 8], which has been widely used to verify
concurrent distributed systems, a close relative of concurrent
multi-threaded systems. As with Ivy, VerusSync transitions
are described by enabling conditions (specifying when a tran-
sition is allowed) and state updates (see Figure 4, bottom).
The unique part of VerusSync is its special “sharded” update
commands, illustrated below.

In showing that a VerusSync system is well-formed, the key
proof obligations are safety conditions which the developer
proves by supplying an inductive invariant. Supplying induc-
tive invariants may still be nontrivial, but it is a widely under-
stood process that allows developers to draw from experience
with loop invariants and distributed system invariants. Be-
cause of this, our experience has shown us that resources are
easier to specify and prove correct this way than via monoidal
composition. However, VerusSync still appeals to the same
underlying theory behind resource algebras; our metatheory
shows that a well-formed VerusSync system (i.e., one satis-
fying the inductiveness conditions) always corresponds to a
resource algebra with the necessary properties.

VerusSync In Action. In VerusSync, the developer first
constructs a state comprised of fields, each labeled with
a sharding strategy defining how the field relates to ghost
shards manipulated in the code. For example, a variable field
is represented by a single shard; a map field is represented
by one shard for every key-value entry in the map.2

Next, the developer defines the protocol as VerusSync tran-
sitions. Each “update” operation has one meaning for the
aggregate state and a corresponding meaning as an operation

2The sharding strategies together define the monoid in the underlying re-
source algebra, a formality VerusSync hides from developers.

7

on shards. For example, the add keyword adds a key-value
pair to a state’s map field, and correspondingly creates a
shard containing the pair. Similarly, remove means “remove
a key-value pair” and “consume a shard”.

NR Queue. At the core of our NR case study (§4.2.2) is a
ring buffer that tracks three pieces of state in shared memory:
• a buffer for storing message entries,
• a tail pointer where the next message goes, and
• a per-thread head pointer, indicating where each thread

should read the next message.
There is a complex, multi-step protocol for reading and pro-
cessing messages from the queue. This protocol is imple-
mented by a thread called the executor thread. As the queue
operates, no one thread ever simultaneously owns all the
pieces of state above, as they are accessed and updated con-
currently. Even so, we maintain complex invariants, e.g., relat-
ing an executor thread’s internal state to its head pointers, or
relating the head and tail pointers to non-empty buffer entries.

We model this protocol as a VerusSync ghost resource with
fields representing the pieces of state, and we distribute the
resulting shards across the threads. The ring buffer’s fields
are sharded with different strategies.
• The tail field marks the next empty space. Its value is

represented by a single shard that a thread must own to
read or modify the field. The ghost shard is associated with
a particular physical memory word accessed atomically,
here via compare-and-swap.

• The buffer_size field is constant: all threads agree
on (can “read”) its value; it is permanently read-shared.

• The local_versions field contains per-thread head-
pointers into the queue. It is represented by a map where
each entry is an ownable shard, each associated with a
different atomically-accessed memory word.

• The executor field describes the intermediate state of
each executor thread within its multi-step protocol.
In NR, an executor thread pops operations off the queue

and processes them. The thread selects a range to read, reads
each buffer entry in that range, and finally updates the atomic
field corresponding to an entry of last_version to point
to the end of this range. Figure 5 shows this final step of
the protocol, as expressed in VerusSync. Verus then gener-
ates appropriate owned ghost shards, which the programmer
manipulates in their executable code to prove that the code
correctly follows the protocol. Figure 6 shows one way to ar-
range an executable data structure to maintain the relationship
between the concrete data and the corresponding ghost shards.
The style is similar to that in IronSync, which provides an
in-depth example [27, §3.3.2].

The VerusSync approach lets Verus determine, syntacti-
cally, that the transition only affects two shards. This then
allows the developer to perform the operation when they
have ownership of those two shards without ownership of
any of the many other shards in the system. Finally, because

1 enum ReaderState {
2 // We have identified the start point of the range

to
3 // be processed, but not yet the endpoint.
4 Starting { start: LogIdx },
5 // We are processing the range 'start..end', and
6 // the next entry to be read is 'cur'.
7 Range { start: LogIdx, end: LogIdx, cur: LogIdx },
8 // ...
9 }

10
11 enum ExecutorState {
12 Idle,
13 Reading(ReaderState),
14
15 // Other states for phases unrelated to reading
16 AdvancingHead { /* ... */ },
17 AdvancingTail { /* ... */ },
18 Appending { /* ... */ },
19 }
20
21 // ------------------- VerusSync --------------------
22 fields {
23 #[sharding(variable)] pub tail: LogIdx,
24 #[sharding(constant)] pub buffer_size: LogIdx,
25 #[sharding(map)]
26 pub local_versions: Map<NodeId, LogIdx>,
27 #[sharding(map)]
28 pub executor: Map<NodeId, ExecutorState>,
29 /* ... */
30 }
31
32 reader_finish(
33 node_id: NodeId, start: nat, end: nat, cur: nat) {
34 // Advance node's state from `Reading` to `Idle`.
35 // The 'require' condition indicates a precondition
36 // that we be at the end of the range we originally
37 // selected for this executor phase.
38 require(cur == end);
39 remove executor -= [node_id =>
40 ExecutorState::Reading(
41 ReaderState::Range{start, end, cur})];
42 add executor += [node_id => ExecutorState::Idle];
43
44 // Advance the node's current version to `end`.
45 // The transition has no precondition on the pre-
46 // state value of the version, but CyclicBuffer's
47 // invariants imply that it increases in this step.
48 remove local_versions -= [node_id => let _];
49 add local_versions += [node_id => end];
50 }

Figure 5. A More Advanced VerusSync Example. An executor
thread completing an update takes this finish transition. The
transition is only possible if the thread owns two shards needed
for remove: one showing the executor is working on Reading a
range that finishes at end, and another that proves it owns the right
to mutate the node_id version entry. The transition replaces those
shards (via add) with one that notes the executor is now Idle and
another that stores end into the node_id version entry.

VerusSync allows us to easily interpret this system as a transi-
tion system, we can use traditional state-machine techniques
to prove global properties of the ring buffer, most notably that
the threads’ accesses to the buffer entries are well-formed.

4 Evaluation
We evaluate Verus as a system verification language across
two key dimensions. First, is its proof automation sufficiently
powerful and fast for complex system verification? Second,
is it expressive enough to specify important system properties
and give developers the freedom to write high-performance
code that satisfies them?

8

1 pub struct NrLog {
2 // Named after the AtomicU64 type in Rust's
3 // standard library, Verus's standard library
4 // provides an AtomicU64 type that supports
5 // ghost shards. The vector holds one per replica.
6 pub local_versions:
7 Vec<AtomicU64<LocalVersionShard, ...>>,
8 // ...
9 }

10
11 invariant on local_versions
12 forall |i: int|
13 where (0 <= i < self.local_versions.len())
14 specifically (self.local_versions[i])
15 is (val: u64, shard: LocalVersionShard)
16 {
17 shard.key == i
18 && shard.value == v
19 && 0 <= v <= MAX_IDX
20 && ...
21 }

Figure 6. Linking Executable Code to VerusSync Transi-
tions. Through a combination of trusted Verus primitives and
verified utility code from Verus’s “standard library,” we can en-
able multiple, concurrently-running threads to manipulate the
LocalVersionShard by associating it with an atomic memory
cell that can be accessed in a safe, concurrent manner. To streamline
this process, Verus provides the invariant on ... is ...
syntax (shown here) to easily write a predicate that connects the
ghost shard with the physical value of the atomic cell. When the
code atomically updates the physical value, the code also invokes
a VerusSync API to update the corresponding ghost shard (e.g., by
invoking the reader_finish step), and maintain the invariant.

An ideal evaluation would build 𝐾 large systems in 𝑁 dif-
ferent frameworks; however, each such system might warrant
an entire paper. Instead, we adopt a pragmatic, multi-scale
evaluation strategy. First, we conduct “millibenchmarks” that
compare Verus against many verification frameworks on small
but representative system-relevant tasks. Second, macrobench-
marks show that these benefits translate to benefits at scale. In
total, we verify over 6.1K source lines of Rust code, entailing
over 31K source lines of proof. Except where noted, the ex-
periments below are conducted on an AWS EC2 m5.8xlarge
instance (Intel Xeon Platinum 8175M @ 2.50GHz) with 16
cores (SMT disabled) and 128GiB of memory.

4.1 Millibenchmark Evaluation

We begin by designing a series of “millibenchmarks”, each
large enough to capture an important system verification task,
but small enough that we can implement them in multiple
verification frameworks and analyze them in some detail.
We measure the wall-clock time to verify each version. To
reduce the risk that we use another verification framework
naively, we draw our benchmarks from those provided by the
frameworks themselves, so we presume they are reasonably
optimized. Where we change examples or port new ones to ex-
isting frameworks, we have confirmed with the framework’s
designers that our artifacts are reasonably idiomatic.

4.1.1 Frameworks We focus on comparison to verification
frameworks that (a) have been used to verify complex prop-
erties of large-scale systems, and (b) offer a large degree

of automation “out of the box”. This includes Dafny [32],
which has verified cryptographic code [51, 57], application
stacks [27], distributed systems [13], storage systems [16],
and production-scale multi-threaded systems [27]; and F★ [33]
(specifically the Low★ subset [58]), which has verified ∼43K
lines of C and assembly code in a cryptographic provider [14],
the TLS 1.3 [59] and QUIC [60] record layers, and the Signal
messaging protocol [61]. We also include Ivy [7, 8], which
has verified distributed system protocols [9, 18–22], as a rep-
resentative of tools trading expressivity for proof automation.

To confirm that Verus’s benefits arise from design decisions
beyond simply building on Rust, we include two state-of-the-
art automated Rust verification frameworks, Prusti [62] and
Creusot [63], even though they do not verify concurrent code
and have not yet been applied to large-scale systems projects.

4.1.2 Millibenchmarks We first define three general-purpose
millibenchmarks on basic data structures. Even these simple
examples fall outside the restricted logics of Ivy [8] or Ser-
val [5], so we add a benchmark that fits in Ivy’s EPR.

Singly linked list. To evaluate verification efficiency on
a small task, we verify that a singly linked list implements
an abstract sequence. The verified API is consistent across
the verification tools. The list supports pushing at the head,
popping at the tail, indexing, and iteration.

Doubly linked list. To evaluate how verification perfor-
mance scales with complexity, we implement a doubly linked
list and prove it implements an abstract sequence, which re-
quires unsafe Rust because of its cyclic pointers. This list
supports pushing and popping at both ends and iteration.

Memory reasoning. Reasoning about memory updates at
scale is a perennial challenge for system verification. Hence,
using the verified lists, we evaluate the cost of memory rea-
soning by repeatedly updating four instances of the list within
the same function and then asserting basic facts about the
elements of the lists. This requires the verifiers to determine
whether an update to one list might affect another.

Distributed lock. To evaluate distributed protocols, we
port a distributed lock to Verus and prove mutual exclusion
in two ways: in default-mode following the Dafny proof [13],
and using Verus’s EPR mode, similar to the Ivy proof [7].

4.1.3 Millibenchmark Results Linked lists. Figure 7a
shows the verification time for our two linked list examples.
For the singly linked list, we see that the other frameworks
take 3–28× longer than Verus, while for the more complex
doubly linked list, they take 24–61× longer. A major cause is
Verus’s emphasis on concise SMT queries (§3.1, Figure 9).

Successful verification times are the easiest apples-to-apples
comparison, but in reality, developers most often wait on tools
for failure feedback. To capture this, we “break” each singly-
linked-list proof twice, once by removing a precondition in
pop and once in index, and measure the time for the tool to
report an error. Figure 8 shows that Verus, Dafny, and Prusti
pinpoint failures as quickly as they report success. Low★

9

Single Double
Verus 0.66 1.15
Creusot 1.88* 30.83
Dafny 3.83 28.11
Low★ 7.16 70.17
Prusti 18.80 n/a

(a) Verification time (sec) for
the singly linked list and doubly
linked list millibenchmarks. Prusti
cannot express cyclic pointers.

4 8 12 16
0.1

1

10

100

pushes

tim
e

(s
ec

)

Low*
Prusti
Dafny
Creusot
Verus

(b) Verification time when varying the
number of pushes to four singly linked
lists. Note the log-scale y-axis.

Figure 7. Millibenchmarks. Median of 20 single-threaded runs.
* This measures the non-interactive time for Creusot to produce a
partial result; completing the proof requires manual intervention.

Ve
ru

s
Cr

eu
so

t
Da

fn
y F*

Pr
us

ti

0
5

10
15
20

function: pop

tim
e

(s
)

Ve
ru

s
Cr

eu
so

t
Da

fn
y F*

Pr
us

ti

0
5

10
15
20
25

function: index

tim
e

(s
)

Ve
ru

s
Cr

eu
so

t
Da

fn
y F*

Pr
us

ti

0
5

10
15
20

function: pop

tim
e

(s
)

success
error

Figure 8. Error Results. Median of 20 runs. Tools use 8 threads.

degenerates from one second to four. Creusot’s approach de-
generates from one second to twenty.

Memory reasoning. Figure 7b shows how the verification
frameworks handle increasing numbers of memory modifica-
tions to four singly linked lists. Dafny and Low★ must perform
complex aliasing reasoning, and hence Dafny’s verification
time grows dramatically as memory modifications increase.
Low★ struggles even more, failing to return after more than
one push. Prior Rust-based tools perform better, but they still
grow super-linearly,3 whereas Verus remains linear (with a
slope of ∼ 1.6ms/push) across the entire benchmark. The re-
sults for doubly linked lists are similar, with Verus remaining
linear with a slope of ∼ 1.8ms/push.

Distributed lock. The safety proof uses an inductive invari-
ant maintained across protocol steps. The default-mode proof
of inductiveness is around ∼25 lines. When abstracted into
EPR, the proof is automatic, but creating and using the ab-
straction required ∼100 lines of (straightforward) boilerplate.
While this example demonstrates that Verus’s EPR mode ap-
plies to protocols as well as data structures, the excessive
boilerplate suggests that (a) EPR benefits complex examples,
like the Delegation Map in §3.2, more than simple ones, and
(b) Verus needs to automate the boilerplate.

4.2 Macrobenchmarks

To show that the benefits of Verus identified by the millibench-
marks translate into benefits at scale, we assembled a suite

3Creusot “races” several solvers in parallel; the dip in the graph shows when
a different solver starts to “win”.

System
→ Verifier

Line Count

P/
C

R
at

io Time (s)

SM
T

(M
B

)

tr
us

te
d

pr
oo

f

co
de

1
co

re

8
co

re
s

IronKV
→ Verus 1613 4509 1533 2.9 41 18 17
→ Dafny 1205 8070 1923 4.2 445 201 352
NR
→ Verus 369 5237 736 7.1 17 9 22
→ L.Dafny 104 7828 730 10.7 1089 228 2063
Page table 1117 5329 400 13.3 63 34 37
Mimalloc 282 13703 3178 4.3 262 55 152
P. log 1284 2913 739 3.9 12 6 9
Verus total 4692 31231 6119 5.1

Figure 9. Macrobenchmark Statistics. Verification performance
and proof overhead of each benchmark, including the original veri-
fied systems we ported to Verus. Times are seconds to successfully
verify the entire project. SMT is the total size of queries sent to Z3.

of macrobenchmarks. First, to compare with other frame-
works at scale, we port two large verified systems to Verus
(§4.2.1,§4.2.2) and compare each to its original.

Second, since developers rarely start from completed code
and proofs, we examine the tool’s behavior in its primary
mode, when verification fails. To explore fresh development,
we report on the experience of writing and verifying three
additional systems from scratch in Verus (§4.2.3-§4.2.5).

4.2.1 Porting IronKV from IronFleet [13] IronFleet [13],
originally developed in Dafny, allows developers to prove that
a distributed system’s implementation is both safe and live.
This requires proofs about both the implementation that runs
on each host, and the protocol the hosts use to achieve the
system’s high-level properties.

Verification Target. We port the host implementation of
IronFleet’s IronKV, which dynamically shards a key-value
store across a set of nodes. We skip the protocol level, since
Dafny and Verus share similar mathematical modeling tools
and are likely to admit very similar proofs. We translate the
protocol-level host description to Verus as the goal spec, im-
plement the host in Rust, and prove it matches this spec.

Porting Experience. To support comparisons, our port pre-
serves IronKV’s algorithmic decisions, but, where highlighted
below, our design exploits Verus-enabled improvements.
Baaaaaaaaaaaaaaaaaaaaaassssssssssssssssssssssiiiiiiiiiiiiiiiiiiiiiicccccccccccccccccccccc Immmmmmmmmmmmmmmmmmmmmmpppppppppppppppppppppproooooooooooooooooooooovvvvvvvvvvvvvvvvvvvvvveeeeeeeeeeeeeeeeeeeeeemmmmmmmmmmmmmmmmmmmmmmeeeeeeeeeeeeeeeeeeeeeennnnnnnnnnnnnnnnnnnnnnttttttttttttttttttttttssssssssssssssssssssss We encountered multiple places where
IronFleet split a simple task across many functions, presum-
ably to keep verification times manageable. For example,
IronFleet’s MaybeAckPacketImpl accepts a message and
looks up its sequence number in a tombstone table to decide
whether to ack it. In IronFleet, this simple task is split into
three functions across 37 lines. Our port inlined those three
functions into a single 30-line Verus function that verifies
faster than any of the three original Dafny functions.

10

Get 128 Get 256 Get 512 Set 128 Set 256 Set 512
0

2

4

Workload, payload size (bytes)

T
hr

ou
gh

pu
t(

ko
p/

s)

IronFleet
Verus

Figure 10. IronKV Performance. The Verus version performs
comparably to the IronFleet original. Each bar shows the mean of
100 trials; error bars show 95% confidence intervals.

In another place, the IronFleet code dealt with the painful-
ness of reasoning about fine-grained mutation by replacing
an entire data structure with a modified version, leading to in-
efficient (and confusing) code. The Verus port simply uses an
&mut reference, which expresses the original intent directly
and avoids a performance penalty.
Paaaaaaaaaaaaaaaaaaaaaarssssssssssssssssssssssiiiiiiiiiiiiiiiiiiiiiinnnnnnnnnnnnnnnnnnnnnngggggggggggggggggggggg aaaaaaaaaaaaaaaaaaaaaannnnnnnnnnnnnnnnnnnnnndddddddddddddddddddddd Maaaaaaaaaaaaaaaaaaaaaarsssssssssssssssssssssshhhhhhhhhhhhhhhhhhhhhhaaaaaaaaaaaaaaaaaaaaaalliiiiiiiiiiiiiiiiiiiiiinnnnnnnnnnnnnnnnnnnnnngggggggggggggggggggggg IronFleet’s IronKV includes a generic
marshalling library for basic types: arrays, tuples, tagged
unions, 64-bit integers, and byte-arrays. The developers mapped
Dafny datatypes to and from these basic types, manually con-
structing tedious boilerplate code and proofs.

We instead wrote our own marshalling library that elim-
inates this tedium via user-defined macros (§3.3) and provides
a more ergonomic interface using traits. Our Marshallable
trait (including a marshaller, parser, and relevant lemmas),
provides a consistent interface, improving on the original
which relies on naming convention. Primitives (like u64) and
repetition (Vec<T>) implement this trait with hand-written
proofs. Arbitrary structs and enums use macros that auto-
matically derive implementation and proofs, eliminating the
repetitive manual proofs prevalent in the Dafny original.
EPR Deeeeeeeeeeeeeeeeeeeeeelllllllllllllllllllllleeeeeeeeeeeeeeeeeeeeeeggggggggggggggggggggggaaaaaaaaaaaaaaaaaaaaaattttttttttttttttttttttiiiiiiiiiiiiiiiiiiiiiioooooooooooooooooooooonnnnnnnnnnnnnnnnnnnnnn Maaaaaaaaaaaaaaaaaaaaaapppppppppppppppppppppp Prooffffffffffffffffffffff Using Verus’s EPR mode drasti-
cally simplified the proof of this data structure (§3.2).

Evaluation. Figure 9 shows that the Verus port saves
both code and proof, improving the proof-to-code ratio. The
trusted column is noisy because of how we reinterpreted the
original protocol layer as our spec. The authors that com-
pleted this port reported crisp interactivity, supported by the
95% smaller query sizes and 10× faster verification.

To confirm the fidelity of our port, we benchmark both
systems with the test harness from IronFleet’s repository [64].
The experiments run on Windows 11 Enterprise on a 2.4GHz
Intel Core i9-10885H CPU 8-core laptop with 64GiB of RAM.
We launch three server processes on separate ports, then
launch the client workload generator with 10 threads and
10,000 keys for 30 seconds. We vary the workload (Get vs.
Set) and the payload size; sizes are limited to 512 bytes by cur-
rent IronFleet repository. Since our port is fairly faithful, we
anticipated similar performance, which Figure 10 confirms.

Summary. Our success porting the IronKV host demon-
strates that Verus at least subsumes the functionality of Dafny
employed by IronFleet, and that it is largely compatible with

that approach to system verification. It improves by moving
heap reasoning into ownership reasoning, which eases per-
formant implementation of mutable data structures and, by
optimizing solver performance, enables coalescing tasks into
more reasonably-sized functions. Rust’s macro system and
Verus’s EPR support significantly reduce developer tedium.

4.2.2 Porting NR from IronSync [27] The IronSync frame-
work [27] enables verifying the correctness of complex shared-
memory programs that employ application-specific synchro-
nization primitives to achieve high performance. It is built on
Linear Dafny [65], a variant of Dafny extended with simple
Rust-inspired ownership types.

Verification Target. We ported the IronSync implementa-
tion of the Node Replication (NR) concurrency library [66].
NR converts a sequential data structure into a high-performance,
concurrent version via replication and flat combining. We
prove the same result as IronSync, namely that the concurrent
system meets the sequential functional spec linearizably.

Porting Experience. Our Verus-NR implementation is
more faithful to the original NR than IronSync-NR in three
ways. First, both NR and Verus-NR are written in Rust;
IronSync-NR was a port to Dafny. Second, Verus-NR exposes
a trait-based interface similar to NR’s in order to support
generic data structures, whereas IronSync does not support
traits. Finally, Verus-NR admits runtime-defined counts and
dynamic thread registration, whereas IronSync-NR fixes the
replica and thread counts statically.

Furthermore, proofs related to concurrency are substan-
tially simplified in Verus-NR due to the use of VerusSync
(§3.4) rather than IronSync’s monoid formalism. VerusSync
allows cleaner, application-level reasoning, and the simplifi-
cation is reflected in our reduction in proof code.

Evaluation. Figure 9 shows that Verus-NR requires far
fewer lines of proof. This is mostly due to the use of VerusSync.
Verus also improves the verification time by two orders of
magnitude. Such speed creates a qualitative advantage: Where
we might verify one function at a time with a slower tool, we
iterated while verifying the entire project, which provides an
early warning when a change to a function contract breaks a
proof elsewhere.

We compare Verus-NR’s performance with unverified NR
and with IronSync-NR using IronSync’s artifact [67] bench-
mark. We run this benchmark on a four-socket Intel Xeon
Platinum 8260 with 24 cores and hyper-threading enabled.
The benchmark initializes NR with four replicas wrapping an
x86-page-table data structure. We increase the thread count,
filling up NUMA cores before utilizing hyperthreads. We
measure the throughput at write ratios of 0%, 10%, and 100%.
Figure 11 shows that Verus-NR’s performance matches the
unverified, highly optimized original implementation.

Summary. Porting NR shows that Verus can verify state-of-
the-art concurrent data structures optimized via application-
specific synchronization primitives. It does so faster, more

11

4 48 96 144 1920
200
400
600
800

0% writes

4 48 96 144 1920

10

20

30

10% writes

4 48 96 144 1920
1
2
3
4
5

100% writes

threads

M
op

s/
se

c

NR IronSync-NR Verus-NR

Figure 11. NR. Verus-NR matches the performance of IronSync-NR
(and the unverified original) despite a much easier proof.

intuitively, and with less developer tedium than existing state-
of-the-art concurrent verifiers.

4.2.3 New Verified System: An OS Page Table To evalu-
ate Verus when developing a new verified system, we imple-
ment a verified page-table data structure for x86-64.

Verification Target. The map and unmap operations of a
page table entail traversing and modifying a tree data structure
whose nodes pack flags and addresses into 64-bit machine
words. Verifying it requires specifying and reasoning about
ISA-level software and hardware components.

Correctness is specified from the perspective of a user-
space process on a single-processor system: reads return the
most recently written value; map and unmap operations ex-
pand and restrict the virtual memory domain. The implemen-
tation employs a (trusted) hardware spec that defines how
the MMU interprets page table memory to translate virtual
addresses to physical.

Development Experience. We highlight two aspects of
how Verus enables necessary low-level reasoning: bit-level
manipulation of 64-bit words and specifying how the imple-
mentation may interact with page-table memory.

Page-table entries are bit-packed 64-bit words. To reason
about them efficiently, we rely heavily on Verus’s automation
for bit-vector, non-linear, and proof-by-computation reason-
ing (§3.3), which we invoke 62, 39, and 11 times, respectively.
They enable us to automatically discharge conditions like:4

forall|a:u64,i:u64| i < 13 && (a & mask!(13u64,29u64) ==
0) ==> ((a | bit!(i)) & mask!(13u64,29u64) == 0)

which in other frameworks [32, 33] would have incurred
tedious manual proof [14, 52].

The trusted spec of the MMU describes how it translates
memory accesses based on the values of page table entries.
This interpretation is only meaningful with respect to the
physical values in the memory storing the page table. The
trusted spec provides a struct that encapsulates ownership
(and allocation) of the page-table memory: ownership pre-
vents other writes to the entries, the encapsulation tracks the
values of the entries as ghost state, and the MMU contract
can thereby make promises about its translation. Ownership
facilitates soundly specifying this hardware behavior.

Evaluation. As shown in Figure 9, our page table consists
of 400 lines of executable code, which required 5329 lines

4mask!(x, y) sets the bits between x and y.

Figure 12. Page Table Run-time Performance.

of proof, resulting in a relatively high 13.3:1 proof-to-code
ratio. This may be a result of this being our first large-scale
development in Verus; more experience may suggest different
abstractions for some proofs. A page table is also a complex
OS component, so a high ratio may be inevitable. When it
comes to verifying a complete OS, independent work uses
Verus to verify a full microkernel [24]; the authors report a
7.5:1 proof-to-code ratio.

We compare our implementation against a recent unverified
page table implementation [66] in a single-threaded setting,
reporting mean latency over 100M map and unmap operations
on 4K frames. Figure 12 shows our implementation matches
the reference for mapping frames, but our unmap is much
slower. This discrepancy is because we reclaim emptied page
directories, which we confirm by benchmarking an (unveri-
fied) modification of our page table with reclamation disabled
(Unmap(Verif.*) in the figure). Larger OS-level benchmarks
show negligible differences, even with the cost of our unmap.

Summary. This system demonstrates Verus’s ability to
specify both OS and hardware interfaces and reason about a
complex low-level implementation connecting the two.

4.2.4 New Verified System: Memory Allocator As our
largest, most complex new system, we develop a concurrent
memory allocator.

Verification Target. Our work is based on mimalloc [68],
which provides state-of-the-art performance. Since mimalloc
is written in C, our Verus version translates C into Rust idioms,
but preserves the overall data structures and algorithms. We
prove our implementation functionally correct, meaning that
every allocation returns non-aliased memory.

Development Experience. Any memory allocator system
faces two significant challenges.

Address space management. The overall objective of a
memory allocator is to bridge the gap between an OS mem-
ory API that supports coarse-grained, page-aligned alloca-
tions (e.g., the mmap syscall on Linux) and an allocator API
supporting arbitrary-sized allocations (free and malloc).
This requires careful accounting of the address space.

To reason about the address space, we use ghost memory
permissions [10]. We write a trusted specification for mmap
in terms of ghost permissions; these permissions can then be
passed up to the client when they call malloc.

Cross-thread deallocations. A client may free memory
on a different thread from which it was originally allocated.
Mimalloc’s design handles this by depositing cross-thread
deallocations into an atomic free list, a lock-free linked list
accessed via atomic compare-and-swap.

12

Benchmark mimalloc Verus-mimalloc
cfrac 4.6 s. 9.7 s.
larsonN-sized 4.1 s. 12.0 s.
sh6benchN 0.14 s. 2.0 s.
xmalloc-testN 0.34 s. 0.73 s.
cache-scratch1 1.2 s. 1.2 s.
cache-scratchN 0.16 s. 0.16 s.
glibc-simple 1.2 s. 6.6 s.
glibc-thread 1.1 s. 3.6 s.

Figure 13. Mimalloc Benchmarks Supported by Verus-mimalloc.
Benchmarks run on Linux on an 8-core, 3.60GHz Intel i9-9900K.
The mimalloc authors label cfrac and larsonN-sized as “real world”
benchmarks and the others as pathological stress tests.

To do the same, we utilize Verus’s ability to associate ghost
state with atomic locations (§3.4). Specifically, we deposit
ghost memory permissions from cross-thread deallocations
into the atomic variable holding the linked list’s head pointer.

Both address space management and cross-thread deallo-
cations are challenging due to the complexity of memory
ownership across threads. This complex ownership structure
is implicit in the original C codebase; porting to verified Rust
requires us to make the ownership structure explicit. With
ghost state, this is possible (and necessary) to a degree even
beyond what could be done in unverified, unsafe Rust.

Evaluation. We have implemented a subset of the fea-
tures and optimizations supported by mimalloc’s design. For
comparison’s sake, Verus-mimalloc has about 3.1K lines of
executable code, while the original is about 10K lines of
code. Our allocator supports use as a drop-in replacement for
the system allocator with some limitations: it does not yet
support realloc, aligned allocations, or allocations greater
than 128KiB. It can complete 8 out of 19 benchmarks from
mimalloc’s benchmark suite [69], though it does not yet reach
performance parity (Figure 13). We focused our initial devel-
opment on aspects highlighted in the mimalloc report [68],
particularly those affecting concurrency, so we believe Verus-
mimalloc is prepared to support the missing features and
optimizations in the future.

Figure 9 shows a favorable proof-to-code-ratio of 4.3. Fur-
thermore, the allocator’s user-facing specification is very
succinct: between initialization, malloc, and free, it is
only 37 lines. The allocator relies on OS interfaces (mmap
and thread utilities) with 245 lines of trusted spec, bringing
the total to 282. Our allocator also relies heavily on Verus’s
bit-vector, non-linear, and proof-by-computation automation
(§3.3), which we invoke 78, 71, and 187 times, respectively.

Summary. Totaling over 17.2K lines (code and proof),
Verus-mimalloc is the largest of our macrobenchmarks and
the largest Verus project we know of. Even so, Verus verifies
the entire project in just over a minute.

4.2.5 New Verified System: Persistent Log To evaluate
Verus’s utility for verifying production code, we developed

a persistent circular log for byte-addressable storage devices
such as Optane DC Persistent Memory [70].

Verification Target. The log offers asynchronous append
and synchronous advance_head operations to its storage
system client, and supports atomic appends to multiple sepa-
rate logs.

Our log is designed for storing low-level metadata and
data in a cloud-scale production storage system. It is inte-
grated into a production codebase, which incorporates it via
Cargo.toml as just another Rust crate.

Development Experience. We verify the implementation
refines an abstract, infinite log; that all operations are atomic
with respect to crashes; and that the log metadata is protected
from corruption up to CRC. These properties are essential for
persistent memory, which has a small persistence granularity
and is at risk for fine-grained media errors, random bit flips,
and stray writes [71]. They are also especially valuable in
cloud-scale storage, where crashing and corruption bugs too
rare to detect with traditional testing still turn up.

Production integration is simple: Verus erases all but Rust
content for tools other than the verifier; standard rustc sees
only executable code and readily consumes it. For the crates
that the verified code depends on, such as a CRC crate, we
write a specification and mark it trusted.

To simplify our proofs, our initial verified log converted
each metadata structure to a byte slice before writing to per-
sistent memory, incurring unnecessary copying in DRAM.
Our latest version provides a Serializable trait with
spec methods to specify the byte-level layout of metadata.
Structures that implement this trait can be copied directly
to persistent memory without runtime conversion to a slice,
removing this overhead while providing the same guarantees.

Evaluation. Verus verifies the log implementation in 12s
with a proof-to-code ratio of 3.9 (Figure 9), while offering
correctness, crash safety, and metadata-corruption detection.

We evaluate performance on a 128GiB Optane Persis-
tent Memory Module device. All log updates are written
directly to the device through a 4GiB memory-mapped file in
Ext4-DAX [72]. We compare the latest verified log against
libpmemlog [73] from the state-of-the-art PMDK [74], and
against the original log prototype.

Figure 14 compares the append throughput of all three sys-
tems with 95% confidence intervals. Each data point is 8GiB
of appends (including operations to free space so the log can
wrap around). The initial version of the verified log provided
low throughput on small appends due to its extra copying; the
latest version eliminates this overhead and achieves compa-
rable throughput to libpmemlog. libpmemlog and the
current verified log have similar throughput even though the
verified log calculates CRCs and libpmemlog does not,
because libpmemlog acquires and releases a lock on each
append while the verified log uses no locks.

Summary. The verified log shows that Verus can develop
software that integrates naturally into production code bases.

13

0.125 0.25 0.5 1 4 8 64 128 256
Append size (KiB)

0
200
400
600
800

1000
1200

Th
ro

ug
hp

ut
 (M

iB
/s

)

PMDK
initial
latest

Figure 14. Verified log vs. libpmemlog. Append throughput

It also demonstrates that Verus supports reasoning about
domain-specific properties, like crash safety, without “baking”
such reasoning into Verus itself.

5 Related Work
Multiple groups [2, 3, 75–80] have employed interactive
proof assistants like Coq [29] and Isabelle/HOL [81] to ver-
ify systems. By default, these are less automated than SMT
solvers: developers manually walk the verifier through the
proof by applying tactics, leading to large proof-to-code ratios
(e.g., over 20 : 1 for the initial version of seL4 [82]), despite
some recent domain-specific improvements [80].

In contrast, Verus continues a line of work on program
verifiers [11, 32, 33, 62], which focus on verifying programs
written in a particular language. Using solvers, these tools
typically offer more automation “out of the box” (e.g., the
Ironclad project [12] had a proof-to-code ratio of 5 : 1).

Verus benefits from prior work on using ownership type
systems to simplify memory reasoning in systems code. For
example, a prior study on Linear Dafny [16] quantifies the
benefits of using ownership to reason about memory access in
complex systems [65], and shows how ownership can co-exist
with traditional memory reasoning. Linear Dafny’s ownership
types are considerably less sophisticated than Rust’s, however.
Linear Dafny in turn builds on Cogent’s purely functional
support for borrowing [83] and on early work by Wadler [84].

Verus is one of several tools building on Rust. RustBelt [85]
focuses on manually verifying unsafe Rust code using Coq.
Prusti [62] encodes Rust code into the Viper verification
framework [86], which leads Prusti to essentially re-verify
Rust’s typechecking, resulting in larger SMT queries. While
conceptually similar to Verus, Creusot [63] lacks Verus’s abil-
ity to reason about ghost resources. As §4.1 shows, Verus
verifies equivalent code faster than either Prusti or Creusot.
Aeneas [87] translates Rust code into a pure functional form
that the developer then reasons about in a separate proof assis-
tant (currently Lean [30]); this differs from Verus’s intrinsic
approach where the developer writes code and proofs directly
in Rust. In addition, Prusti, Creusot, and Aeneas do not offer
EPR-style automation, include support for system-specific
idioms, or reason about concurrency.

Prior work on Verus [10] focuses on Verus’s ghost own-
ership mechanism and a formalization of the interactions
between spec, proof, and executable code. This paper, in turn,
focuses on systems-relevant aspects of how Verus:

1. Optimizes SMT performance via context pruning and the
careful design of quantifier trigger-selection (§3.1);

2. Provides the proof-free automation (§3.2) of tools like
Ivy [7, 8, 18–22] by allowing a developer to opt into the re-
stricted EPR logic on a per-module basis, and then soundly
connect such proofs to code written in unrestricted logic;

3. Incorporates simple-to-invoke proof automation for non-
linear arithmetic, bit-vectors, and proof-by-computation
both to address systems-verification needs and to keep the
main SMT encoding simple and efficient (§3.3);

4. Introduces VerusSync (§3.4), a novel state-transition-based
language to describe operations on ghost state embed-
ded in code via Rust ownership types. Unlike other sys-
tems [3, 27, 28] (or prior work on Verus [10]), VerusSync
does not require the developer to understand or construct
low-level resource algebras.

While others have built individual systems using Verus [23–
25], we evaluate the impact of Verus’s design choices through
an extensive comparative evaluation (§4).

6 Conclusion
Verus aims to consolidate the gains made by the system-
verification community in a unified tool. By building on a
mainstream language (Rust), Verus makes these gains avail-
able to a much broader audience of system developers. At
the same time, by leveraging Rust and our carefully designed
system-oriented features, Verus provides a higher-level start-
ing point for future research in this area. Ultimately, we hope
that Verus enables researchers to identify the exciting research
challenges that emerge as we scale verification to new heights
of system size and complexity.

Acknowledgments
We thank our shepherd, Ronghui Gu, and the OSDI 2024 and
SOSP 2024 anonymous reviewers for helpful feedback on
the paper. Thanks also to Cheng Huang and Yiheng Tao from
Azure Storage for their help with problem definition, discus-
sion, and integration of the persistent log. Finally, thanks to
Gerd Zellweger, who helped improve the design of the veri-
fied page table, and to Xavier Denis, who assisted in writing
the Creusot version of the millibenchmarks.

Matthias Brun was supported by a gift from the VMware
University Research Fund. Reto Achermann was supported
by the Natural Sciences and Engineering Research Council of
Canada (NSERC). Hayley LeBlanc was partially supported
by donations from Toyota. Work at CMU was supported, in
part, by an Amazon Research Award (Fall 2022 CFP), a gift
from VMware, the Future Enterprise Security initiative at
Carnegie Mellon CyLab (FutureEnterprise@CyLab), NSF
grant CCF 2318953, and funding from AFRL and DARPA
under Agreement FA8750-24-9-1000. Chanhee Cho was also
supported by the Kwanjeong Educational Foundation.

14

References
[1] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang.

Push-button verification of file systems via crash refinement. In Pro-
ceedings of the USENIX Symposium on Operating Systems Design and
Implementation (OSDI), November 2016.

[2] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans
Kaashoek, and Nickolai Zeldovich. Using Crash Hoare Logic for certi-
fying the FSCQ file system. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), Monterey, California, October
2015.

[3] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zel-
dovich. Verifying concurrent, crash-safe systems with Perennial. In
Proceedings of the ACM Symposium on Operating Systems Principles
(SOSP), October 2019.

[4] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson,
James Bornholt, Emina Torlak, and Xi Wang. Hyperkernel: Push-button
verification of an OS kernel. In Proceedings of the 26th Symposium on
Operating Systems Principles, 2017.

[5] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina
Torlak, and Xi Wang. Scaling symbolic evaluation for automated
verification of systems code with Serval. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles, 2019.

[6] Luke Nelson, Jacob Van Geffen, Emina Torlak, and Xi Wang. Spec-
ification and verification in the field: Applying formal methods to
BPF just-in-time compilers in the linux kernel. In Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), November 2020.

[7] Oded Padon, Kenneth L. McMillan, Mooly Sagiv, Aurojit Panda, and
Sharon Shoham. Ivy: Safety verification by interactive generalization.
In Proceedings of the ACM Conference on Programming Language
Design and Implementation (PLDI), 2016.

[8] Kenneth L. McMillan and Oded Padon. Ivy: A multi-modal verification
tool for distributed algorithms. In Proceedings of the Conference on
Computer Aided Verification (CAV), 2020.

[9] Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, Oded Padon,
Mooly Sagiv, Sharon Shoham, James R. Wilcox, and Doug Woos.
Modularity for decidability of deductive verification with applications
to distributed systems. In Proceedings of the ACM Conference on
Programming Language Design and Implementation (PLDI), 2018.

[10] Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha
Subasinghe, Yi Zhou, Jon Howell, Bryan Parno, and Chris Hawblitzel.
Verus: Verifying Rust programs using linear ghost types. In Proceed-
ings of the ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), December 2023.

[11] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach,
MichałMoskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies.
VCC: A practical system for verifying concurrent C. In Proceedings of
the Conference on Theorem Proving in Higher Order Logics, 2009.

[12] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan
Parno, Danfeng Zhang, and Brian Zill. Ironclad apps: End-to-end
security via automated full-system verification. In Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), October 2014.

[13] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan
Parno, Michael L. Roberts, Srinath Setty, and Brian Zill. IronFleet:
Proving practical distributed systems correct. In Proceedings of the
ACM Symposium on Operating Systems Principles (SOSP), October
2015.

[14] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz, Chris Haw-
blitzel, Marina Polubelova, Karthikeyan Bhargavan, Benjamin Beur-
douche, Joonwon Choi, Antoine Delignat-Lavaud, Cedric Fournet, Na-
talia Kulatova, Tahina Ramananandro, Aseem Rastogi, Nikhil Swamy,
Christoph Wintersteiger, and Santiago Zanella-Beguelin. EverCrypt: A
fast, verified, cross-platform cryptographic provider. In Proceedings of

the IEEE Symposium on Security and Privacy (Oakland), May 2020.
[15] Marina Polubelova, Karthikeyan Bhargavan, Jonathan Protzenko, Ben-

jamin Beurdouche, Aymeric Fromherz, Natalia Kulatova, and Santiago
Zanella-Béguelin. HACL×N: Verified generic SIMD crypto (for all
your favorite platforms). In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), October 2020.

[16] Travis Hance, Andrea Lattuada, C. Hawblitzel, Jon Howell, Rob John-
son, and Bryan Parno. Storage systems are distributed systems (so
verify them that way!). In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2020.

[17] R. Piskac, L. M. de Moura, and N. Bjørner. Deciding effectively propo-
sitional logic using DPLL and substitution sets. Journal of Automated
Reasoning, 44(4), 2010.

[18] Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. Paxos
made EPR: Decidable reasoning about distributed protocols. In Object-
Oriented Programming Systems, Languages, and Applications (OOP-
SLA), October 2017.

[19] Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos Kapritsos, Baris
Kasikci, and Karem A. Sakallah. I4: incremental inference of inductive
invariants for verification of distributed protocols. In Tim Brecht and
Carey Williamson, editors, Proceedings of the ACM Symposium on
Operating Systems Principles, (SOSP), 2019.

[20] Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno. Finding
invariants of distributed systems: It’s a small (enough) world after
all. In Proceedings of the USENIX Symposium on Networked Systems
Design and Implementation (NSDI), April 2021.

[21] Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh. DuoAI: Fast,
automated inference of inductive invariants for verifying distributed
protocols. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), July 2022.

[22] Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana, and
Gabriel Ryan. DistAI: Data-Driven automated invariant learning for
distributed protocols. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2021.

[23] Xudong Sun, Wenjie Ma, Jiawei Tyler Gu, Zicheng Ma, Tej Chajed,
Jon Howell, Andrea Lattuada, Oded Padon, Lalith Suresh, Adriana
Szekeres, and Tianyin Xu. Anvil: Verifying liveness of cluster man-
agement controllers. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), July 2024.

[24] Xiangdong Chen, Zhaofeng Li, Lukas Mesicek, Vikram Narayanan,
and Anton Burtsev. Atmosphere: Towards practical verified kernels in
Rust. In Proceedings of the Workshop on Kernel Isolation, Safety and
Verification (KISV), 2023.

[25] Ziqiao Zhou, Weiteng Chen, Chris Hawblitzel, and Weidong Cui.
VeriSMo: A verified security module for confidential VMs. In Pro-
ceedings of the USENIX Symposium on Operating Systems Design and
Implementation (OSDI), July 2024.

[26] Jianan Yao, Ziqiao Zhou, Weiteng Chen, and Weidong Cui. Leveraging
large language models for automated proof synthesis in Rust. https:
//arxiv.org/abs/2311.03739, 2023.

[27] Travis Hance, Yi Zhou, Andrea Lattuada, Reto Achermann, Alex Con-
way, Ryan Stutsman, Gerd Zellweger, Chris Hawblitzel, Jon Howell,
and Bryan Parno. Sharding the state machine: Automated modular rea-
soning for complex concurrent systems. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
July 2023.

[28] Upamanyu Sharma, Ralf Jung, Joseph Tassarotti, Frans Kaashoek, and
Nickolai Zeldovich. Grove: A separation-logic library for verifying
distributed systems. In Proceedings of the Symposium on Operating
Systems Principles (SOSP), 2023.

[29] Coq Development Team. The Coq Proof Assistant https://coq.inria.fr/.
[30] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn,

and Jakob von Raumer. The Lean theorem prover. In Proceedings of
the Conference on Automated Deduction (CADE), August 2015.

15

https://arxiv.org/abs/2311.03739
https://arxiv.org/abs/2311.03739

[31] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proceedings of the 17th Annual IEEE Symposium on
Logic in Computer Science, 2002.

[32] K. Rustan M. Leino. Dafny: An automatic program verifier for func-
tional correctness. In Proceedings of the Conference on Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR), 2010.

[33] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine
Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Four-
net, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoué,
and Santiago Zanella-Béguelin. Dependent types and multi-monadic
effects in F*. In Principles of Programming Languages, 2016.

[34] Nicholas D. Matsakis and Felix S. Klock. The Rust language. Ada
Lett., 34(3):103–104, October 2014.

[35] Steve Klabnik and Carol Nichols. The Rust Programming Language.
No Starch Press, USA, 2018.

[36] Liam Proven. Linux 6.1: Rust to hit mainline kernel. https://www.
theregister.com/2022/10/05/rust_kernel_pull_request_pulled/,
October 2022.

[37] Shane Miller and Carl Lerche. Sustainability with Rust. https://aws.
amazon.com/blogs/opensource/sustainability-with-rust/, Febru-
ary 2022.

[38] Google. Announcing KataOS and Sparrow. https:
//opensource.googleblog.com/2022/10/announcing-kataos-
and-sparrow.html, October 2022.

[39] Yechan Bae, Youngsuk Kim, Ammar Askar, Jungwon Lim, and Taesoo
Kim. RUDRA: Finding memory safety bugs in Rust at the ecosystem
scale. In Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), October 2021.

[40] Jacob R. Lorch, Yixuan Chen, Manos Kapritsos, Haojun Ma, Bryan
Parno, Shaz Qadeer, Upamanyu Sharma, James R. Wilcox, and
Xueyuan Zhao. Armada: Automated verification of concurrent code
with sound semantic extensibility. ACM Transactions on Programming
Languages and Systems, 44(2), June 2022.

[41] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan
Parno. Komodo: Using verification to disentangle secure-enclave hard-
ware from software. In Proceedings of the ACM Symposium on Oper-
ating Systems Principles (SOSP), October 2017.

[42] Yi Zhou, Jay Bosamiya, Yoshiki Takashima, Jessica Li, Marijn Heule,
and Bryan Parno. Mariposa: Measuring SMT instability in auto-
mated program verification. In Proceedings of the Formal Methods in
Computer-Aided Design (FMCAD) Conference, October 2023.

[43] Leslie Lamport. Specifying Systems: The TLA+ Languange and Tools
for Hardware and Software Engineers. Addison-Wesley, 2002.

[44] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In
Proceedings of the Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, 2008.

[45] Robert Floyd. Assigning meanings to programs. In Proceedings of
Symposia in Applied Mathematics, 1967.

[46] Tony Hoare. An axiomatic basis for computer programming. Commu-
nications of the ACM, 12, 1969.

[47] Michał Moskal. Programming with triggers. In Proceedings of the
Workshop on Satisfiability Modulo Theories, 2009.

[48] Oded Padon, Jochen Hoenicke, Giuliano Losa, Andreas Podelski,
Mooly Sagiv, and Sharon Shoham. Reducing liveness to safety in
first-order logic. PACMPL, 2(POPL):26:1–26:33, 2018.

[49] Jason R. Koenig, Oded Padon, Sharon Shoham, and Alex Aiken. In-
ferring invariants with quantifier alternations: Taming the search space
explosion. In Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), volume 13243, 2022.

[50] Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang. Certified verifi-
cation of algebraic properties on low-level mathematical constructs in
cryptographic programs. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 2017.

[51] Yi Zhou, Sydney Gibson, Sarah Cai, Menucha Winchell, and Bryan
Parno. Galápagos: Developing verified low-level cryptography on
heterogeneous hardwares. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), November 2023.

[52] Jacob R. Lorch, Yixuan Chen, Manos Kapritsos, Hao-
jun Ma, Bryan Parno, Shaz Qadeer, Upamanyu Sharma,
James R. Wilcox, and Xueyuan Zhao. Armada code
repository. https://github.com/microsoft/Armada/blob/
ee799110f9aecc3deab31b94521bdbcd27f58363/Test/qbss/bv.
dfy#L54, December 2023.

[53] Martijn Oostdijk and Herman Geuvers. Proof by computation in the
Coq system. Theoretical Computer Science, 272(1–2), February 2002.

[54] Guido Martínez, Danel Ahman, Victor Dumitrescu, Nick Giannarakis,
Chris Hawblitzel, Catalin Hritcu, Monal Narasimhamurthy, Zoe
Paraskevopoulou, Clément Pit-Claudel, Jonathan Protzenko, Tahina
Ramananandro, Aseem Rastogi, and Nikhil Swamy. Meta-F*: Proof
automation with SMT, tactics, and metaprograms. In 28th European
Symposium on Programming (ESOP), April 2019.

[55] Ralf Jung, R. Krebbers, Jacques-Henri Jourdan, A. Bizjak, L. Birkedal,
and Derek Dreyer. Iris from the ground up: A modular foundation
for higher-order concurrent separation logic. Journal of Functional
Programming, 28, 2018.

[56] Peter W. O’Hearn. Resources, concurrency, and local reasoning. Theo-
retical Computer Science, 375(1–3), April 2007.

[57] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino,
Jacob R. Lorch, Bryan Parno, Ashay Rane, Srinath Setty, and Laure
Thompson. Vale: Verifying high-performance cryptographic assembly
code. In Proceedings of the USENIX Security Symposium, August
2017.

[58] Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina
Ramananandro, Peng Wang, Santiago Zanella-Béguelin, Antoine
Delignat-Lavaud, Catalin Hritcu, Karthikeyan Bhargavan, Cédric Four-
net, and Nikhil Swamy. Verified low-level programming embedded in
F★. PACMPL, 1(ICFP), September 2017.

[59] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet,
Markulf Kohlweiss, Jiangyang Pan, Jonathan Protzenko, Aseem Ras-
togi, Nikhil Swamy, Santiago Zanella-Béguelin, and Jean Karim Zinzin-
dohoué. Implementing and proving the TLS 1.3 record layer. In
Proceedings of the IEEE Symposium on Security and Privacy, May
2017.

[60] Antoine Delignat-Lavaud, Cédric Fournet, Bryan Parno, Jonathan
Protzenko, Tahina Ramananandro, Jay Bosamiya, Joseph Lallemand,
Itsaka Rakotonirina, and Yi Zhou. A security model and fully verified
implementation for the IETF QUIC record layer. In Proceedings of the
IEEE Symposium on Security and Privacy, May 2021.

[61] Jonathan Protzenko, Benjamin Beurdouche, Denis Merigoux, and
Karthikeyan Bhargavan. Formally verified cryptographic web appli-
cations in WebAssembly. In Proceedings of the IEEE Symposium on
Security and Privacy, May 2019.

[62] Fabian Wolff, Aurel Bílý, Christoph Matheja, Peter Müller, and Alexan-
der J. Summers. Modular specification and verification of closures in
Rust. Proceedings of the ACM on Programming Languages, 5(OOP-
SLA), October 2021.

[63] Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. Creusot:
A foundry for the deductive verication of Rust programs. In Proceed-
ings of the International Conference on Formal Engineering Methods,
October 2022.

[64] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Hao-
jun Ma, Bryan Parno, Michael L. Roberts, Srinath Setty, and Brian Zill.
IronFleet code. https://research.microsoft.com/projects/ironclad/,
2015.

[65] Jialin Li, Andrea Lattuada, Yi Zhou, Jonathan Cameron, Jon How-
ell, Bryan Parno, and Chris Hawblitzel. Linear types for large-scale

16

https://www.theregister.com/2022/10/05/rust_kernel_pull_request_pulled/
https://www.theregister.com/2022/10/05/rust_kernel_pull_request_pulled/
https://aws.amazon.com/blogs/opensource/sustainability-with-rust/
https://aws.amazon.com/blogs/opensource/sustainability-with-rust/
https://opensource.googleblog.com/2022/10/announcing-kataos-and-sparrow.html
https://opensource.googleblog.com/2022/10/announcing-kataos-and-sparrow.html
https://opensource.googleblog.com/2022/10/announcing-kataos-and-sparrow.html
https://github.com/microsoft/Armada/blob/ee799110f9aecc3deab31b94521bdbcd27f58363/Test/qbss/bv.dfy#L54
https://github.com/microsoft/Armada/blob/ee799110f9aecc3deab31b94521bdbcd27f58363/Test/qbss/bv.dfy#L54
https://github.com/microsoft/Armada/blob/ee799110f9aecc3deab31b94521bdbcd27f58363/Test/qbss/bv.dfy#L54
https://research.microsoft.com/projects/ironclad/

systems verification. In Proceedings of the ACM Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOP-
SLA), November 2022.

[66] Ankit Bhardwaj, Chinmay Kulkarni, Reto Achermann, Irina Calciu,
Sanidhya Kashyap, Ryan Stutsman, Amy Tai, and Gerd Zellweger.
NrOS: Effective replication and sharing in an operating system. In
Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI), July 2021.

[67] Travis Hance and Yi Zhou and Andrea Lattuada and Reto Achermann
and Alex Conway and Ryan Stutsman and Gerd Zellweger and Chris
Hawblitzel and Jon Howell and Bryan Parno. IronSync OSDI 2023 ar-
tifact. https://github.com/secure-foundations/ironsync-osdi2023,
2023.

[68] Daan Leijen, Ben Zorn, and Leonardo de Moura. Mimalloc: Free list
sharding in action. Technical Report MSR-TR-2019-18, Microsoft,
June 2019.

[69] Daan Leijen. Mimalloc-bench. https://github.com/daanx/mimalloc-
bench, 2023.

[70] Intel. Intel optane persistent memory. https://www.intel.com/content/
www/us/en/products/docs/memory-storage/optane-persistent-
memory/overview.html.

[71] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah,
Amit Borase, Tamires Brito Da Silva, Steven Swanson, and Andy
Rudoff. NOVA-Fortis: A fault-tolerant non-volatile main memory file
system. In Proceedings of the ACM Symposium on Operating Systems
Principles, (SOSP), 2017.

[72] Linux Kernel Developers. Direct Access for files. https://www.kernel.
org/doc/Documentation/filesystems/dax.txt.

[73] PMDK Developers. libpmemlog. https://pmem.io/pmdk/manpages/
linux/v1.3/libpmemlog.3/.

[74] PMDK Developers. PMDK. https://pmem.io/pmdk/.
[75] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott

Owens. CakeML: A verified implementation of ML. In Proceed-
ings of the ACM Symposium on Principles of Programming Languages
(POPL), January 2014.

[76] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray,
Thomas Sewell, Rafal Kolanski, and Gernot Heiser. Comprehensive
formal verification of an OS microkernel. ACM Transactions on Com-
puter Systems, 32(1), 2014.

[77] Xavier Leroy. Formal verification of a realistic compiler. Communica-
tions of the ACM (CACM), 52(7):107–115, 2009.

[78] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock,
Xi Wang, Michael D. Ernst, and Thomas Anderson. Verdi: A frame-
work for implementing and formally verifying distributed systems.
In Proceedings of the ACM Conference on Programming Language
Design and Implementation (PLDI), June 2015.

[79] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim,
Vilhelm Sjöberg, and David Costanzo. CertiKOS: An extensible archi-
tecture for building certified concurrent OS kernels. In Proceedings of
the USENIX Conference on Operating Systems Design and Implemen-
tation, 2016.

[80] Xupeng Li, Xuheng Li, Wei Qiang, Ronghui Gu, and Jason Nieh.
Spoq: Scaling machine-checkable systems verification in Coq. In
Proceddings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI), July 2023.

[81] Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL:
A Proof Assistant for Higher-Order Logic. Springer, 2002.

[82] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Michael Norrish, Rafal Kolanski, Thomas Sewell, Harvey Tuch, and
Simon Winwood. seL4: Formal verification of an OS kernel. In
Proceedings of the ACM Symposium on Operating Systems Principles
(SOSP), 2009.

[83] Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter
Chubb, Liam O’Connor, Joel Beeren, Yutaka Nagashima, Japheth
Lim, Thomas Sewell, Joseph Tuong, Gabriele Keller, Toby Murray,
Gerwin Klein, and Gernot Heiser. Cogent: Verifying high-assurance
file system implementations. In Proceedings of the ACM Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2016.

[84] Philip Wadler. Linear types can change the world! In Proceedings of
the IFIP TC 2 Working Conference on Programming Concepts and
Methods, 1990.

[85] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
RustBelt: Securing the foundations of the Rust programming language.
Proceedings of the ACM on Programming Languages, 2(POPL), Janu-
ary 2018.

[86] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A
verification infrastructure for permission-based reasoning. In Proceed-
ings of the Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI), 2016.

[87] Son Ho and Jonathan Protzenko. Aeneas: Rust verification by func-
tional translation. Proceedings of the ACM on Programming Lan-
guages, 6(ICFP):711–741, 2022.

17

https://github.com/secure-foundations/ironsync-osdi2023
https://github.com/daanx/mimalloc-bench
https://github.com/daanx/mimalloc-bench
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://pmem.io/pmdk/manpages/linux/v1.3/libpmemlog.3/
https://pmem.io/pmdk/manpages/linux/v1.3/libpmemlog.3/
https://pmem.io/pmdk/

	Abstract
	1 Introduction
	2 Verus Overview: Verification for Systems
	3 Key Aspects of Verus's Design for Systems
	3.1 Streamlined, General-Purpose Automation
	3.2 Selective Use of EPR for Full Automation
	3.3 Custom Proof Automation for System Idioms
	3.4 Automated Reasoning for Multi-Threading

	4 Evaluation
	4.1 Millibenchmark Evaluation
	4.2 Macrobenchmarks

	5 Related Work
	6 Conclusion
	References

