1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
//! This file contains proofs related to division. These are internal
//! functions used within the math standard library.
//!
//! It's based on the following file from the Dafny math standard library:
//! `Source/DafnyStandardLibraries/src/Std/Arithmetic/Internal/DivInternals.dfy`.
//! That file has the following copyright notice:
//! /*******************************************************************************
//! *  Original: Copyright (c) Microsoft Corporation
//! *  SPDX-License-Identifier: MIT
//! *
//! *  Modifications and Extensions: Copyright by the contributors to the Dafny Project
//! *  SPDX-License-Identifier: MIT
//! *******************************************************************************/
#[allow(unused_imports)]
use super::super::super::prelude::*;

verus! {

#[cfg(verus_keep_ghost)]
use super::super::super::arithmetic::internals::general_internals::is_le;
#[cfg(verus_keep_ghost)]
use super::super::super::arithmetic::internals::mod_internals::{
    lemma_mod_induction_forall,
    lemma_mod_induction_forall2,
    mod_auto,
    lemma_mod_auto,
    lemma_mod_basics,
};
use super::super::super::arithmetic::internals::mod_internals_nonlinear;
#[cfg(verus_keep_ghost)]
#[cfg(verus_keep_ghost)]
use super::super::super::arithmetic::internals::div_internals_nonlinear;
#[cfg(verus_keep_ghost)]
use super::super::super::math::{add as add1, sub as sub1};

/// This function recursively computes the quotient resulting from
/// dividing two numbers `x` and `d`, in the case where `d > 0`
#[verifier::opaque]
pub open spec fn div_pos(x: int, d: int) -> int
    recommends
        d > 0,
    decreases
            (if x < 0 {
                d - x
            } else {
                x
            }),
    when d > 0
{
    if x < 0 {
        -1 + div_pos(x + d, d)
    } else if x < d {
        0
    } else {
        1 + div_pos(x - d, d)
    }
}

/// This function recursively computes the quotient resulting from
/// dividing two numbers `x` and `d`. It's only meaningful when `d !=
/// 0`, of course.
#[verifier::opaque]
pub open spec fn div_recursive(x: int, d: int) -> int
    recommends
        d != 0,
{
    // reveal(div_pos);
    if d > 0 {
        div_pos(x, d)
    } else {
        -1 * div_pos(x, -1 * d)
    }
}

/// Proof of basic properties of integer division when the divisor is
/// the given positive integer `n`
pub proof fn lemma_div_basics(n: int)
    requires
        n > 0,
    ensures
        (n / n) == 1 && -((-n) / n) == 1,
        forall|x: int| 0 <= x < n <==> #[trigger] (x / n) == 0,
        forall|x: int| #[trigger] ((x + n) / n) == x / n + 1,
        forall|x: int| #[trigger] ((x - n) / n) == x / n - 1,
{
    lemma_mod_auto(n);
    lemma_mod_basics(n);
    div_internals_nonlinear::lemma_small_div();
    div_internals_nonlinear::lemma_div_by_self(n);
    assert forall|x: int| #[trigger] (x / n) == 0 implies 0 <= x < n by {
        mod_internals_nonlinear::lemma_fundamental_div_mod(x, n);
    }
}

/// This function says that for any `x` and `y`, there are two
/// possibilities for the sum `x % n + y % n`: (1) It's in the range
/// `[0, n)` and `(x + y) / n == x / n + y / n`. (2) It's in the range
/// `[n, n + n)` and `(x + y) / n = x / n + y / n + 1`.
pub open spec fn div_auto_plus(n: int) -> bool {
    forall|x: int, y: int|
        #![trigger ((x + y) / n)]
        {
            let z = (x % n) + (y % n);
            ((0 <= z < n && ((x + y) / n) == x / n + y / n) || (n <= z < n + n && ((x + y) / n) == x
                / n + y / n + 1))
        }
}

/// This function says that for any `x` and `y`, there are two
/// possibilities for the difference `x % n - y % n`: (1) It's in the
/// range `[0, n)` and `(x - y) / n == x / n - y / n`. (2) It's in the
/// range `[-n, 0)` and `(x - y) / n = x / n - y / n - 1`.
pub open spec fn div_auto_minus(n: int) -> bool {
    forall|x: int, y: int|
        #![trigger ((x - y) / n)]
        {
            let z = (x % n) - (y % n);
            ((0 <= z < n && ((x - y) / n) == x / n - y / n) || (-n <= z < 0 && ((x - y) / n) == x
                / n - y / n - 1))
        }
}

/// This function states various properties of integer division when
/// the denominator is `n`, including the identity property, a fact
/// about when quotients are zero, and facts about adding and
/// subtracting integers over this common denominator
pub open spec fn div_auto(n: int) -> bool
    recommends
        n > 0,
{
    &&& mod_auto(n)
    &&& (n / n == -((-n) / n) == 1)
    &&& forall|x: int| 0 <= x < n <==> #[trigger] (x / n) == 0
    &&& div_auto_plus(n)
    &&& div_auto_minus(n)
}

/// Proof of `div_auto_plus(n)`, not exported publicly because it's
/// just used as part of [`lemma_div_auto`] to prove `div_auto(n)`
proof fn lemma_div_auto_plus(n: int)
    requires
        n > 0,
    ensures
        div_auto_plus(n),
{
    lemma_mod_auto(n);
    lemma_div_basics(n);
    assert forall|x: int, y: int|
        {
            let z = (x % n) + (y % n);
            ((0 <= z < n && #[trigger] ((x + y) / n) == x / n + y / n) || (n <= z < n + n && ((x
                + y) / n) == x / n + y / n + 1))
        } by {
        let f = |xx: int, yy: int|
            {
                let z = (xx % n) + (yy % n);
                ((0 <= z < n && ((xx + yy) / n) == xx / n + yy / n) || (n <= z < 2 * n && ((xx + yy)
                    / n) == xx / n + yy / n + 1))
            };
        assert forall|i: int, j: int|
            {
                // changing this from j + n to mod's addition speeds up the verification
                // otherwise you need higher rlimit
                // might be a good case for profilers
                &&& (j >= 0 && #[trigger] f(i, j) ==> f(i, add1(j, n)))
                &&& (i < n && f(i, j) ==> f(i - n, j))
                &&& (j < n && f(i, j) ==> f(i, j - n))
                &&& (i >= 0 && f(i, j) ==> f(i + n, j))
            } by {
            assert(((i + n) + j) / n == ((i + j) + n) / n);
            assert((i + (j + n)) / n == ((i + j) + n) / n);
            assert(((i - n) + j) / n == ((i + j) - n) / n);
            assert((i + (j - n)) / n == ((i + j) - n) / n);
        }
        assert forall|i: int, j: int| 0 <= i < n && 0 <= j < n implies #[trigger] f(i, j) by {
            assert(((i + n) + j) / n == ((i + j) + n) / n);
            assert((i + (j + n)) / n == ((i + j) + n) / n);
            assert(((i - n) + j) / n == ((i + j) - n) / n);
            assert((i + (j - n)) / n == ((i + j) - n) / n);
        }
        lemma_mod_induction_forall2(n, f);
        assert(f(x, y));
    }
}

/// Proof of `div_auto_mius(n)`, not exported publicly because it's
/// just used as part of [`lemma_div_auto`] to prove `div_auto(n)`
#[verifier::spinoff_prover]
proof fn lemma_div_auto_minus(n: int)
    requires
        n > 0,
    ensures
        div_auto_minus(n),
{
    lemma_mod_auto(n);
    lemma_div_basics(n);
    assert forall|x: int, y: int|
        {
            let z = (x % n) - (y % n);
            ((0 <= z < n && #[trigger] ((x - y) / n) == x / n - y / n) || (-n <= z < 0 && ((x - y)
                / n) == x / n - y / n - 1))
        } by {
        let f = |xx: int, yy: int|
            {
                let z = (xx % n) - (yy % n);
                ((0 <= z < n && ((xx - yy) / n) == xx / n - yy / n) || (-n <= z < 0 && (xx - yy) / n
                    == xx / n - yy / n - 1))
            };
        assert forall|i: int, j: int|
            {
                &&& (j >= 0 && #[trigger] f(i, j) ==> f(i, add1(j, n)))
                &&& (i < n && f(i, j) ==> f(sub1(i, n), j))
                &&& (j < n && f(i, j) ==> f(i, sub1(j, n)))
                &&& (i >= 0 && f(i, j) ==> f(add1(i, n), j))
            } by {
            assert(((i + n) - j) / n == ((i - j) + n) / n);
            assert((i - (j - n)) / n == ((i - j) + n) / n);
            assert(((i - n) - j) / n == ((i - j) - n) / n);
            assert((i - (j + n)) / n == ((i - j) - n) / n);
        }
        assert forall|i: int, j: int| 0 <= i < n && 0 <= j < n implies #[trigger] f(i, j) by {
            assert(((i + n) - j) / n == ((i - j) + n) / n);
            assert((i - (j - n)) / n == ((i - j) + n) / n);
            assert(((i - n) - j) / n == ((i - j) - n) / n);
            assert((i - (j + n)) / n == ((i - j) - n) / n);
        }
        lemma_mod_induction_forall2(n, f);
        assert(f(x, y));
    }
}

/// Proof of `div_auto(n)`, which expresses many useful properties of
/// division when the denominator is the given positive integer `n`.
pub proof fn lemma_div_auto(n: int)
    requires
        n > 0,
    ensures
        div_auto(n),
{
    lemma_mod_auto(n);
    lemma_div_basics(n);
    assert forall|x: int| 0 <= x < n <==> #[trigger] (x / n) == 0 by {
        lemma_div_basics(n);
    }
    assert((0 + n) / n == 1);
    assert((0 - n) / n == -1);
    lemma_div_auto_plus(n);
    lemma_div_auto_minus(n);
}

/// This utility function helps prove a mathematical property by
/// induction. The caller supplies an integer predicate, proves the
/// predicate holds in certain base cases, and proves correctness of
/// inductive steps both upward and downward from the base cases. This
/// lemma invokes induction to establish that the predicate holds for
/// the given arbitrary input `x`.
///
/// `f`: The integer predicate
///
/// `n`: Upper bound on the base cases. Specifically, the caller
/// establishes `f(i)` for every value `i` satisfying `is_le(0, i) &&
/// i < n`.
///
/// `x`: The desired case established by this lemma. Its postcondition
/// thus includes `f(x)`.
///
/// To prove inductive steps upward from the base cases, the caller
/// must establish that, for any `i`, `is_le(0, i) && f(i) ==> f(i +
/// n)`. `is_le(0, i)` is just `0 <= i`, but written in a functional
/// style so that it can be used where functional triggers are
/// required.
///
/// To prove inductive steps downward from the base cases, the caller
/// must establish that, for any `i`, `is_le(i + 1, n) && f(i) ==> f(i
/// - n)`. `is_le(i + 1, n)` is just `i + 1 <= n`, but written in a
/// functional style so that it can be used where functional triggers
/// are required.
pub proof fn lemma_div_induction_auto(n: int, x: int, f: spec_fn(int) -> bool)
    requires
        n > 0,
        div_auto(n) ==> {
            &&& (forall|i: int| #[trigger] is_le(0, i) && i < n ==> f(i))
            &&& (forall|i: int| #[trigger] is_le(0, i) && f(i) ==> f(i + n))
            &&& (forall|i: int| #[trigger] is_le(i + 1, n) && f(i) ==> f(i - n))
        },
    ensures
        div_auto(n),
        f(x),
{
    lemma_div_auto(n);
    assert(forall|i: int| is_le(0, i) && i < n ==> f(i));
    assert(forall|i: int| is_le(0, i) && #[trigger] f(i) ==> #[trigger] f(add1(i, n)));
    assert(forall|i: int| is_le(i + 1, n) && #[trigger] f(i) ==> #[trigger] f(sub1(i, n)));
    assert forall|i: int| 0 <= i < n implies #[trigger] f(i) by {
        assert(f(i)) by {
            assert(forall|i: int| is_le(0, i) && i < n ==> f(i));
            assert(is_le(0, i) && i < n);
        };
    };
    lemma_mod_induction_forall(n, f);
    assert(f(x));
}

/// This utility function helps prove a mathematical property by
/// induction. The caller supplies an integer predicate, proves the
/// predicate holds in certain base cases, and proves correctness of
/// inductive steps both upward and downward from the base cases. This
/// lemma invokes induction to establish that the predicate holds for
/// all integer values.
///
/// `f`: The integer predicate
///
/// `n`: Upper bound on the base cases. Specifically, the caller
/// establishes `f(i)` for every value `i` satisfying `is_le(0, i) &&
/// i < n`.
///
/// To prove inductive steps upward from the base cases, the caller
/// must establish that, for any `i`, `is_le(0, i) && f(i) ==> f(i +
/// n)`. `is_le(0, i)` is just `0 <= i`, but written in a functional
/// style so that it can be used where functional triggers are
/// required.
///
/// To prove inductive steps downward from the base cases, the caller
/// must establish that, for any `i`, `is_le(i + 1, n) && f(i) ==> f(i
/// - n)`. `is_le(i + 1, n)` is just `i + 1 <= n`, but written in a
/// functional style so that it can be used where functional triggers
/// are required.
pub proof fn lemma_div_induction_auto_forall(n: int, f: spec_fn(int) -> bool)
    requires
        n > 0,
        div_auto(n) ==> {
            &&& (forall|i: int| #[trigger] is_le(0, i) && i < n ==> f(i))
            &&& (forall|i: int| #[trigger] is_le(0, i) && f(i) ==> f(i + n))
            &&& (forall|i: int| #[trigger] is_le(i + 1, n) && f(i) ==> f(i - n))
        },
    ensures
        div_auto(n),
        forall|i| #[trigger] f(i),
{
    assert(div_auto(n)) by {
        lemma_div_induction_auto(n, 0, f);
    }
    assert forall|i| #[trigger] f(i) by {
        lemma_div_induction_auto(n, i, f);
    }
}

} // verus!