vstd/
bits.rs

1//! Properties of bitwise operators.
2use super::prelude::*;
3
4verus! {
5
6#[cfg(verus_keep_ghost)]
7use super::arithmetic::power::pow;
8#[cfg(verus_keep_ghost)]
9use super::arithmetic::power2::{
10    pow2,
11    lemma_pow2_unfold,
12    lemma_pow2_adds,
13    lemma_pow2_pos,
14    lemma2_to64,
15    lemma2_to64_rest,
16    lemma_pow2_strictly_increases,
17};
18#[cfg(verus_keep_ghost)]
19use super::arithmetic::div_mod::{
20    lemma_div_by_multiple,
21    lemma_div_denominator,
22    lemma_div_is_ordered,
23    lemma_mod_breakdown,
24    lemma_mod_multiples_vanish,
25    lemma_remainder_lower,
26};
27#[cfg(verus_keep_ghost)]
28use super::arithmetic::mul::{
29    lemma_mul_inequality,
30    lemma_mul_is_commutative,
31    lemma_mul_is_associative,
32};
33#[cfg(verus_keep_ghost)]
34use super::calc_macro::*;
35
36} // verus!
37// Proofs that shift right is equivalent to division by power of 2.
38macro_rules! lemma_shr_is_div {
39    ($name:ident, $uN:ty) => {
40        #[cfg(verus_keep_ghost)]
41        verus! {
42        #[doc = "Proof that for x and n of type "]
43        #[doc = stringify!($uN)]
44        #[doc = ", shifting x right by n is equivalent to division of x by 2^n."]
45        pub broadcast proof fn $name(x: $uN, shift: $uN)
46            requires
47                0 <= shift < <$uN>::BITS,
48            ensures
49                #[trigger] (x >> shift) == x as nat / pow2(shift as nat),
50            decreases shift,
51        {
52            if shift == 0 {
53                assert(x >> 0 == x) by (bit_vector);
54                reveal(pow);
55                assert(pow2(0) == 1) by (compute_only);
56            } else {
57                assert(x >> shift == (x >> ((sub(shift, 1)) as $uN)) / 2) by (bit_vector)
58                    requires
59                        0 < shift < <$uN>::BITS,
60                ;
61                calc!{ (==)
62                    (x >> shift) as nat;
63                        {}
64                    ((x >> ((sub(shift, 1)) as $uN)) / 2) as nat;
65                        { $name(x, (shift - 1) as $uN); }
66                    (x as nat / pow2((shift - 1) as nat)) / 2;
67                        {
68                            lemma_pow2_pos((shift - 1) as nat);
69                            lemma2_to64();
70                            lemma_div_denominator(x as int, pow2((shift - 1) as nat) as int, 2);
71                        }
72                    x as nat / (pow2((shift - 1) as nat) * pow2(1));
73                        {
74                            lemma_pow2_adds((shift - 1) as nat, 1);
75                        }
76                    x as nat / pow2(shift as nat);
77                }
78            }
79        }
80        }
81    };
82}
83
84lemma_shr_is_div!(lemma_u128_shr_is_div, u128);
85lemma_shr_is_div!(lemma_u64_shr_is_div, u64);
86lemma_shr_is_div!(lemma_u32_shr_is_div, u32);
87lemma_shr_is_div!(lemma_u16_shr_is_div, u16);
88lemma_shr_is_div!(lemma_u8_shr_is_div, u8);
89
90// Proofs of when a power of 2 fits in an unsigned type.
91macro_rules! lemma_pow2_no_overflow {
92    ($name:ident, $uN:ty) => {
93        #[cfg(verus_keep_ghost)]
94        verus! {
95        #[doc = "Proof that 2^n does not overflow "]
96        #[doc = stringify!($uN)]
97        #[doc = " for an exponent n."]
98        pub broadcast proof fn $name(n: nat)
99            requires
100                0 <= n < <$uN>::BITS,
101            ensures
102                0 < #[trigger] pow2(n) < <$uN>::MAX,
103        {
104            lemma_pow2_pos(n);
105            lemma2_to64();
106            lemma2_to64_rest();
107        }
108        }
109    };
110}
111
112lemma_pow2_no_overflow!(lemma_u64_pow2_no_overflow, u64);
113lemma_pow2_no_overflow!(lemma_u32_pow2_no_overflow, u32);
114lemma_pow2_no_overflow!(lemma_u16_pow2_no_overflow, u16);
115lemma_pow2_no_overflow!(lemma_u8_pow2_no_overflow, u8);
116
117// Proofs that shift left is equivalent to multiplication by power of 2.
118macro_rules! lemma_shl_is_mul {
119    ($name:ident, $no_overflow:ident, $uN:ty) => {
120        #[cfg(verus_keep_ghost)]
121        verus! {
122        #[doc = "Proof that for x and n of type "]
123        #[doc = stringify!($uN)]
124        #[doc = ", shifting x left by n is equivalent to multiplication of x by 2^n (provided no overflow)."]
125        pub broadcast proof fn $name(x: $uN, shift: $uN)
126            requires
127                0 <= shift < <$uN>::BITS,
128                x * pow2(shift as nat) <= <$uN>::MAX,
129            ensures
130                #[trigger] (x << shift) == x * pow2(shift as nat),
131            decreases shift,
132        {
133            $no_overflow(shift as nat);
134            if shift == 0 {
135                assert(x << 0 == x) by (bit_vector);
136                assert(pow2(0) == 1) by (compute_only);
137            } else {
138                assert(x << shift == mul(x << ((sub(shift, 1)) as $uN), 2)) by (bit_vector)
139                    requires
140                        0 < shift < <$uN>::BITS,
141                ;
142                assert((x << (sub(shift, 1) as $uN)) == x * pow2(sub(shift, 1) as nat)) by {
143                    lemma_pow2_strictly_increases((shift - 1) as nat, shift as nat);
144                    lemma_mul_inequality(
145                        pow2((shift - 1) as nat) as int,
146                        pow2(shift as nat) as int,
147                        x as int,
148                    );
149                    lemma_mul_is_commutative(x as int, pow2((shift - 1) as nat) as int);
150                    lemma_mul_is_commutative(x as int, pow2(shift as nat) as int);
151                    $name(x, (shift - 1) as $uN);
152                }
153                calc!{ (==)
154                    ((x << (sub(shift, 1) as $uN)) * 2);
155                        {}
156                    ((x * pow2(sub(shift, 1) as nat)) * 2);
157                        {
158                            lemma_mul_is_associative(x as int, pow2(sub(shift, 1) as nat) as int, 2);
159                        }
160                    x * ((pow2(sub(shift, 1) as nat)) * 2);
161                        {
162                            lemma_pow2_adds((shift - 1) as nat, 1);
163                            lemma2_to64();
164                        }
165                    x * pow2(shift as nat);
166                }
167            }
168        }
169        }
170    };
171}
172
173lemma_shl_is_mul!(lemma_u64_shl_is_mul, lemma_u64_pow2_no_overflow, u64);
174lemma_shl_is_mul!(lemma_u32_shl_is_mul, lemma_u32_pow2_no_overflow, u32);
175lemma_shl_is_mul!(lemma_u16_shl_is_mul, lemma_u16_pow2_no_overflow, u16);
176lemma_shl_is_mul!(lemma_u8_shl_is_mul, lemma_u8_pow2_no_overflow, u8);
177
178macro_rules! lemma_mul_pow2_le_max_iff_max_shr {
179    ($name:ident, $shr_is_div:ident, $uN:ty) => {
180        #[cfg(verus_keep_ghost)]
181        verus! {
182        #[doc = "Proof that for x, n and max of type "]
183        #[doc = stringify!($uN)]
184        #[doc = ", multiplication of x by 2^n is less than or equal to max if and only if x is less than or equal to shifting max right by n."]
185        pub proof fn $name(x: $uN, shift: $uN, max: $uN)
186        requires
187            0 <= shift < <$uN>::BITS,
188        ensures
189            x * pow2(shift as nat) <= max <==> x <= (max >> shift),
190    {
191        assert(max >> shift == max as nat / pow2(shift as nat)) by {
192            $shr_is_div(max, shift as $uN);
193        };
194
195        lemma_pow2_pos(shift as nat);
196
197        if x * pow2(shift as nat) <= max {
198            assert(x <= (max as nat) / pow2(shift as nat)) by {
199                lemma_div_is_ordered(x as int * pow2(shift as nat) as int, max as int, pow2(shift as nat) as int);
200                lemma_div_by_multiple(x as int, pow2(shift as nat) as int);
201            };
202        }
203        if x <= (max >> shift) {
204            assert(x * pow2(shift as nat) <= max as nat) by {
205                lemma_mul_inequality(x as int, max as int / pow2(shift as nat) as int,  pow2(shift as nat) as int);
206                lemma_remainder_lower(max as int, pow2(shift as nat) as int);
207                lemma_mul_is_commutative(max as int / pow2(shift as nat) as int,  pow2(shift as nat) as int);
208            };
209        }
210    }
211    }
212    };
213}
214
215lemma_mul_pow2_le_max_iff_max_shr!(
216    lemma_u64_mul_pow2_le_max_iff_max_shr,
217    lemma_u64_shr_is_div,
218    u64
219);
220lemma_mul_pow2_le_max_iff_max_shr!(
221    lemma_u32_mul_pow2_le_max_iff_max_shr,
222    lemma_u32_shr_is_div,
223    u32
224);
225lemma_mul_pow2_le_max_iff_max_shr!(
226    lemma_u16_mul_pow2_le_max_iff_max_shr,
227    lemma_u16_shr_is_div,
228    u16
229);
230lemma_mul_pow2_le_max_iff_max_shr!(lemma_u8_mul_pow2_le_max_iff_max_shr, lemma_u8_shr_is_div, u8);
231
232verus! {
233
234/// Mask with low n bits set.
235pub open spec fn low_bits_mask(n: nat) -> nat {
236    (pow2(n) - 1) as nat
237}
238
239/// Proof relating the n-bit mask to a function of the (n-1)-bit mask.
240pub broadcast proof fn lemma_low_bits_mask_unfold(n: nat)
241    requires
242        n > 0,
243    ensures
244        #[trigger] low_bits_mask(n) == 2 * low_bits_mask((n - 1) as nat) + 1,
245{
246    calc! {
247        (==)
248        low_bits_mask(n); {}
249        (pow2(n) - 1) as nat; {
250            lemma_pow2_unfold(n);
251        }
252        (2 * pow2((n - 1) as nat) - 1) as nat; {}
253        (2 * (pow2((n - 1) as nat) - 1) + 1) as nat; {
254            lemma_pow2_pos((n - 1) as nat);
255        }
256        (2 * low_bits_mask((n - 1) as nat) + 1) as nat;
257    }
258}
259
260/// Proof that low_bits_mask(n) is odd.
261pub broadcast proof fn lemma_low_bits_mask_is_odd(n: nat)
262    requires
263        n > 0,
264    ensures
265        #[trigger] (low_bits_mask(n) % 2) == 1,
266{
267    calc! {
268        (==)
269        low_bits_mask(n) % 2; {
270            lemma_low_bits_mask_unfold(n);
271        }
272        (2 * low_bits_mask((n - 1) as nat) + 1) % 2; {
273            lemma_mod_multiples_vanish(low_bits_mask((n - 1) as nat) as int, 1, 2);
274        }
275        1nat % 2;
276    }
277}
278
279/// Proof that dividing the low n bit mask by 2 gives the low n-1 bit mask.
280pub broadcast proof fn lemma_low_bits_mask_div2(n: nat)
281    requires
282        n > 0,
283    ensures
284        #[trigger] (low_bits_mask(n) / 2) == low_bits_mask((n - 1) as nat),
285{
286    lemma_low_bits_mask_unfold(n);
287}
288
289/// Proof establishing the concrete values of all masks of bit sizes from 0 to
290/// 32, and 64.
291pub proof fn lemma_low_bits_mask_values()
292    ensures
293        low_bits_mask(0) == 0x0,
294        low_bits_mask(1) == 0x1,
295        low_bits_mask(2) == 0x3,
296        low_bits_mask(3) == 0x7,
297        low_bits_mask(4) == 0xf,
298        low_bits_mask(5) == 0x1f,
299        low_bits_mask(6) == 0x3f,
300        low_bits_mask(7) == 0x7f,
301        low_bits_mask(8) == 0xff,
302        low_bits_mask(9) == 0x1ff,
303        low_bits_mask(10) == 0x3ff,
304        low_bits_mask(11) == 0x7ff,
305        low_bits_mask(12) == 0xfff,
306        low_bits_mask(13) == 0x1fff,
307        low_bits_mask(14) == 0x3fff,
308        low_bits_mask(15) == 0x7fff,
309        low_bits_mask(16) == 0xffff,
310        low_bits_mask(17) == 0x1ffff,
311        low_bits_mask(18) == 0x3ffff,
312        low_bits_mask(19) == 0x7ffff,
313        low_bits_mask(20) == 0xfffff,
314        low_bits_mask(21) == 0x1fffff,
315        low_bits_mask(22) == 0x3fffff,
316        low_bits_mask(23) == 0x7fffff,
317        low_bits_mask(24) == 0xffffff,
318        low_bits_mask(25) == 0x1ffffff,
319        low_bits_mask(26) == 0x3ffffff,
320        low_bits_mask(27) == 0x7ffffff,
321        low_bits_mask(28) == 0xfffffff,
322        low_bits_mask(29) == 0x1fffffff,
323        low_bits_mask(30) == 0x3fffffff,
324        low_bits_mask(31) == 0x7fffffff,
325        low_bits_mask(32) == 0xffffffff,
326        low_bits_mask(64) == 0xffffffffffffffff,
327{
328    #[verusfmt::skip]
329    assert(
330        low_bits_mask(0) == 0x0 &&
331        low_bits_mask(1) == 0x1 &&
332        low_bits_mask(2) == 0x3 &&
333        low_bits_mask(3) == 0x7 &&
334        low_bits_mask(4) == 0xf &&
335        low_bits_mask(5) == 0x1f &&
336        low_bits_mask(6) == 0x3f &&
337        low_bits_mask(7) == 0x7f &&
338        low_bits_mask(8) == 0xff &&
339        low_bits_mask(9) == 0x1ff &&
340        low_bits_mask(10) == 0x3ff &&
341        low_bits_mask(11) == 0x7ff &&
342        low_bits_mask(12) == 0xfff &&
343        low_bits_mask(13) == 0x1fff &&
344        low_bits_mask(14) == 0x3fff &&
345        low_bits_mask(15) == 0x7fff &&
346        low_bits_mask(16) == 0xffff &&
347        low_bits_mask(17) == 0x1ffff &&
348        low_bits_mask(18) == 0x3ffff &&
349        low_bits_mask(19) == 0x7ffff &&
350        low_bits_mask(20) == 0xfffff &&
351        low_bits_mask(21) == 0x1fffff &&
352        low_bits_mask(22) == 0x3fffff &&
353        low_bits_mask(23) == 0x7fffff &&
354        low_bits_mask(24) == 0xffffff &&
355        low_bits_mask(25) == 0x1ffffff &&
356        low_bits_mask(26) == 0x3ffffff &&
357        low_bits_mask(27) == 0x7ffffff &&
358        low_bits_mask(28) == 0xfffffff &&
359        low_bits_mask(29) == 0x1fffffff &&
360        low_bits_mask(30) == 0x3fffffff &&
361        low_bits_mask(31) == 0x7fffffff &&
362        low_bits_mask(32) == 0xffffffff &&
363        low_bits_mask(64) == 0xffffffffffffffff
364    ) by (compute_only);
365}
366
367} // verus!
368// Proofs that and with mask is equivalent to modulo with power of two.
369macro_rules! lemma_low_bits_mask_is_mod {
370    ($name:ident, $and_split_low_bit:ident, $no_overflow:ident, $uN:ty) => {
371        #[cfg(verus_keep_ghost)]
372        verus! {
373        #[doc = "Proof that for natural n and x of type "]
374        #[doc = stringify!($uN)]
375        #[doc = ", and with the low n-bit mask is equivalent to modulo 2^n."]
376        pub broadcast proof fn $name(x: $uN, n: nat)
377            requires
378                n < <$uN>::BITS,
379            ensures
380                #[trigger] (x & (low_bits_mask(n) as $uN)) == x % (pow2(n) as $uN),
381            decreases n,
382        {
383            // Bounds.
384            $no_overflow(n);
385            lemma_pow2_pos(n);
386
387            // Inductive proof.
388            if n == 0 {
389                assert(low_bits_mask(0) == 0) by (compute_only);
390                assert(x & 0 == 0) by (bit_vector);
391                assert(pow2(0) == 1) by (compute_only);
392                assert(x % 1 == 0);
393            } else {
394                lemma_pow2_unfold(n);
395                assert((x % 2) == ((x % 2) & 1)) by (bit_vector);
396                calc!{ (==)
397                    x % (pow2(n) as $uN);
398                        {}
399                    x % ((2 * pow2((n-1) as nat)) as $uN);
400                        {
401                            lemma_pow2_pos((n-1) as nat);
402                            lemma_mod_breakdown(x as int, 2, pow2((n-1) as nat) as int);
403                        }
404                    add(mul(2, (x / 2) % (pow2((n-1) as nat) as $uN)), x % 2);
405                        {
406                            $name(x/2, (n-1) as nat);
407                        }
408                    add(mul(2, (x / 2) & (low_bits_mask((n-1) as nat) as $uN)), x % 2);
409                        {
410                            lemma_low_bits_mask_div2(n);
411                        }
412                    add(mul(2, (x / 2) & (low_bits_mask(n) as $uN / 2)), x % 2);
413                        {
414                            lemma_low_bits_mask_is_odd(n);
415                        }
416                    add(mul(2, (x / 2) & (low_bits_mask(n) as $uN / 2)), (x % 2) & ((low_bits_mask(n) as $uN) % 2));
417                        {
418                            $and_split_low_bit(x as $uN, low_bits_mask(n) as $uN);
419                        }
420                    x & (low_bits_mask(n) as $uN);
421                }
422            }
423        }
424
425        // Helper lemma breaking a bitwise-and operation into the low bit and the rest.
426        proof fn $and_split_low_bit(x: $uN, m: $uN)
427            by (bit_vector)
428            ensures
429                x & m == add(mul(((x / 2) & (m / 2)), 2), (x % 2) & (m % 2)),
430        {
431        }
432        }
433    };
434}
435
436lemma_low_bits_mask_is_mod!(
437    lemma_u64_low_bits_mask_is_mod,
438    lemma_u64_and_split_low_bit,
439    lemma_u64_pow2_no_overflow,
440    u64
441);
442lemma_low_bits_mask_is_mod!(
443    lemma_u32_low_bits_mask_is_mod,
444    lemma_u32_and_split_low_bit,
445    lemma_u32_pow2_no_overflow,
446    u32
447);
448lemma_low_bits_mask_is_mod!(
449    lemma_u16_low_bits_mask_is_mod,
450    lemma_u16_and_split_low_bit,
451    lemma_u16_pow2_no_overflow,
452    u16
453);
454lemma_low_bits_mask_is_mod!(
455    lemma_u8_low_bits_mask_is_mod,
456    lemma_u8_and_split_low_bit,
457    lemma_u8_pow2_no_overflow,
458    u8
459);