1use crate::vstd::arithmetic::mul::*;
5use crate::vstd::arithmetic::power::*;
6use crate::vstd::arithmetic::power2::*;
7use crate::vstd::calc_macro::*;
8use crate::vstd::group_vstd_default;
9use crate::vstd::layout;
10use crate::vstd::prelude::*;
11use core::marker::PhantomData;
12
13verus! {
14
15broadcast use group_vstd_default;
16
17pub trait Base {
19 spec fn base() -> nat;
20
21 proof fn base_min()
22 ensures
23 Self::base() > 1,
24 ;
25}
26
27pub open spec fn base_upper_bound_excl<B: Base>(len: nat) -> int {
31 pow(B::base() as int, len)
32}
33
34pub trait BasePow2: Base {
36 spec fn bits() -> nat;
37
38 proof fn bits_to_base()
39 ensures
40 Self::bits() > 1,
41 Self::base() == pow2(Self::bits()),
42 ;
43}
44
45pub trait CompatibleSmallerBaseFor<BIG: BasePow2>: BasePow2 {
47 proof fn compatible()
48 ensures
49 BIG::bits() > Self::bits() && BIG::bits() % Self::bits() == 0,
50 ;
51}
52
53pub enum Endian {
55 Little,
56 Big,
57}
58
59pub uninterp spec fn endianness() -> Endian;
62
63#[verifier::ext_equal]
67pub struct EndianNat<B: Base> {
68 pub endian: Endian,
69 pub digits: Seq<int>,
70 pub phantom: core::marker::PhantomData<B>,
71}
72
73impl<B: Base> EndianNat<B> {
74 pub open spec fn in_bounds(s: Seq<int>) -> bool {
76 forall|i| 0 <= i < s.len() ==> 0 <= #[trigger] s[i] < B::base()
77 }
78
79 pub open spec fn wf(self) -> bool {
81 Self::in_bounds(self.digits)
82 }
83
84 pub open spec fn new(endian: Endian, digits: Seq<int>) -> Self
86 recommends
87 Self::in_bounds(digits),
88 {
89 EndianNat { endian, digits, phantom: PhantomData }
90 }
91
92 pub open spec fn new_default(digits: Seq<int>) -> Self
94 recommends
95 Self::in_bounds(digits),
96 {
97 EndianNat { endian: endianness(), digits, phantom: PhantomData }
98 }
99
100 pub open spec fn len(self) -> nat {
102 self.digits.len()
103 }
104
105 pub open spec fn index(self, i: int) -> int
107 recommends
108 0 <= i < self.digits.len(),
109 {
110 self.digits[i]
111 }
112
113 pub open spec fn first(self) -> nat
115 recommends
116 self.digits.len() > 0,
117 {
118 self.digits.first() as nat
119 }
120
121 pub open spec fn last(self) -> nat
123 recommends
124 self.digits.len() > 0,
125 {
126 self.digits.last() as nat
127 }
128
129 pub open spec fn least(self) -> nat
131 recommends
132 self.digits.len() > 0,
133 {
134 match self.endian {
135 Endian::Little => self.first(),
136 Endian::Big => self.last(),
137 }
138 }
139
140 pub open spec fn most(self) -> nat
142 recommends
143 self.digits.len() > 0,
144 {
145 match self.endian {
146 Endian::Little => self.last(),
147 Endian::Big => self.first(),
148 }
149 }
150
151 pub open spec fn skip(self, n: nat) -> Self
153 recommends
154 0 <= n <= self.digits.len(),
155 {
156 EndianNat { endian: self.endian, digits: self.digits.skip(n as int), phantom: self.phantom }
157 }
158
159 pub open spec fn take(self, n: nat) -> Self
161 recommends
162 0 <= n <= self.digits.len(),
163 {
164 EndianNat { endian: self.endian, digits: self.digits.take(n as int), phantom: self.phantom }
165 }
166
167 pub open spec fn skip_least(self, n: nat) -> Self
169 recommends
170 0 <= n <= self.digits.len(),
171 {
172 match self.endian {
173 Endian::Little => self.skip(n),
174 Endian::Big => self.take((self.len() - n) as nat),
175 }
176 }
177
178 pub open spec fn skip_most(self, n: nat) -> Self
180 recommends
181 0 <= n <= self.digits.len(),
182 {
183 match self.endian {
184 Endian::Little => self.take((self.len() - n) as nat),
185 Endian::Big => self.skip(n),
186 }
187 }
188
189 pub open spec fn take_least(self, n: nat) -> Self
191 recommends
192 0 <= n <= self.digits.len(),
193 {
194 match self.endian {
195 Endian::Little => self.take(n),
196 Endian::Big => self.skip((self.len() - n) as nat),
197 }
198 }
199
200 pub open spec fn take_most(self, n: nat) -> Self
202 recommends
203 0 <= n <= self.digits.len(),
204 {
205 match self.endian {
206 Endian::Little => self.skip((self.len() - n) as nat),
207 Endian::Big => self.take(n),
208 }
209 }
210
211 pub open spec fn drop_first(self) -> Self
213 recommends
214 self.len() > 0,
215 {
216 EndianNat { endian: self.endian, digits: self.digits.drop_first(), phantom: self.phantom }
217 }
218
219 pub open spec fn drop_last(self) -> Self
221 recommends
222 self.len() > 0,
223 {
224 EndianNat { endian: self.endian, digits: self.digits.drop_last(), phantom: self.phantom }
225 }
226
227 pub open spec fn drop_least(self) -> Self
229 recommends
230 self.len() > 0,
231 {
232 match self.endian {
233 Endian::Little => self.drop_first(),
234 Endian::Big => self.drop_last(),
235 }
236 }
237
238 pub open spec fn drop_most(self) -> Self
240 recommends
241 self.len() > 0,
242 {
243 match self.endian {
244 Endian::Little => self.drop_last(),
245 Endian::Big => self.drop_first(),
246 }
247 }
248
249 pub open spec fn append(self, other: Self) -> Self
251 recommends
252 self.endian == other.endian,
253 {
254 EndianNat::new(self.endian, self.digits + other.digits)
255 }
256
257 pub open spec fn append_least(self, other: Self) -> Self
260 recommends
261 self.endian == other.endian,
262 {
263 match self.endian {
264 Endian::Little => other.append(self),
265 Endian::Big => self.append(other),
266 }
267 }
268
269 pub open spec fn append_most(self, other: Self) -> Self
272 recommends
273 self.endian == other.endian,
274 {
275 match self.endian {
276 Endian::Little => self.append(other),
277 Endian::Big => other.append(self),
278 }
279 }
280
281 pub open spec fn push_first(self, n: int) -> Self
283 recommends
284 n < B::base(),
285 {
286 EndianNat { endian: self.endian, digits: seq![n].add(self.digits), phantom: self.phantom }
287 }
288
289 pub open spec fn push_last(self, n: int) -> Self
291 recommends
292 n < B::base(),
293 {
294 EndianNat { endian: self.endian, digits: self.digits.push(n), phantom: self.phantom }
295 }
296
297 pub open spec fn push_least(self, n: int) -> Self
299 recommends
300 n < B::base(),
301 {
302 match self.endian {
303 Endian::Little => self.push_first(n),
304 Endian::Big => self.push_last(n),
305 }
306 }
307
308 pub open spec fn push_most(self, n: int) -> Self
310 recommends
311 n < B::base(),
312 {
313 match self.endian {
314 Endian::Little => self.push_last(n),
315 Endian::Big => self.push_first(n),
316 }
317 }
318
319 #[verifier::opaque]
321 pub open spec fn to_nat(self) -> nat
322 decreases self.len(),
323 {
324 if self.len() == 0 {
325 0
326 } else {
327 self.drop_least().to_nat() * B::base() + self.least()
328 }
329 }
330
331 pub broadcast proof fn to_nat_properties(self)
332 requires
333 self.wf(),
334 ensures
335 #[trigger] self.to_nat() < base_upper_bound_excl::<B>(self.len()),
336 decreases self.len(),
337 {
338 reveal(EndianNat::to_nat);
339 reveal(pow);
340 if self.len() == 0 {
341 } else {
342 self.drop_least().to_nat_properties();
343
344 calc! {
345 (<)
346 self.to_nat(); (==) {}
347 self.drop_least().to_nat() * B::base() + self.least(); (<) {}
348 self.drop_least().to_nat() * B::base() + B::base(); (<=) {
349 broadcast use lemma_mul_inequality, lemma_mul_is_distributive_sub_other_way;
350
351 assert((base_upper_bound_excl::<B>((self.len() - 1) as nat) - 1)
352 * B::base() as nat == (base_upper_bound_excl::<B>((self.len() - 1) as nat)
353 * B::base() - B::base()) as nat);
354 }
355 (base_upper_bound_excl::<B>((self.len() - 1) as nat) * B::base() - B::base()
356 + B::base()) as nat; (==) {
357 broadcast use lemma_pow1;
358
359 }
360 (base_upper_bound_excl::<B>((self.len() - 1) as nat) * pow(
361 B::base() as int,
362 1,
363 )) as nat; (==) {
364 broadcast use lemma_pow_sub_add_cancel;
365
366 }
367 base_upper_bound_excl::<B>(self.len()) as nat;
368 }
369 }
370 }
371
372 pub proof fn to_nat_append_least(endian: Self, other: Self)
373 requires
374 endian.wf(),
375 other.wf(),
376 endian.endian == other.endian,
377 ensures
378 endian.append_least(other).to_nat() == (endian.to_nat() * base_upper_bound_excl::<B>(
379 other.len(),
380 )) + other.to_nat(),
381 decreases other.len(),
382 {
383 reveal(EndianNat::to_nat);
384 reveal(pow);
385 if other.len() == 0 {
386 } else {
387 let least = other.least();
388 let rest = other.drop_least();
389 Self::to_nat_append_least(endian, rest);
390 assert(endian.append_least(other).drop_least() =~= endian.append_least(rest));
391 assert(endian.to_nat() * base_upper_bound_excl::<B>(rest.len()) * B::base()
392 == endian.to_nat() * base_upper_bound_excl::<B>(rest.len() + 1)) by {
393 broadcast use lemma_pow1;
394
395 assert(B::base() == pow(B::base() as int, 1));
396 broadcast use lemma_pow_adds;
397
398 assert(pow(B::base() as int, rest.len() + 1) == pow(B::base() as int, rest.len())
399 * pow(B::base() as int, 1));
400 assert(endian.to_nat() * base_upper_bound_excl::<B>(rest.len()) * B::base()
401 == endian.to_nat() * base_upper_bound_excl::<B>(rest.len() + 1))
402 by (nonlinear_arith)
403 requires
404 base_upper_bound_excl::<B>(rest.len()) * B::base()
405 == base_upper_bound_excl::<B>(rest.len() + 1),
406 ;
407 }
408 assert(endian.append_least(other).to_nat() == (endian.to_nat()
409 * base_upper_bound_excl::<B>(other.len())) + other.to_nat()) by (nonlinear_arith)
410 requires
411 endian.append_least(other).to_nat() == endian.append_least(rest).to_nat()
412 * B::base() + least,
413 other.to_nat() == rest.to_nat() * B::base() + least,
414 endian.append_least(rest).to_nat() == (endian.to_nat()
415 * base_upper_bound_excl::<B>(rest.len())) + rest.to_nat(),
416 endian.to_nat() * base_upper_bound_excl::<B>(rest.len()) * B::base()
417 == endian.to_nat() * base_upper_bound_excl::<B>(rest.len() + 1),
418 other.len() == rest.len() + 1,
419 ;
420 }
421 }
422
423 pub open spec fn from_nat(n: nat, len: nat) -> Self
426 recommends
427 n < base_upper_bound_excl::<B>(len),
428 decreases len,
429 {
430 if len == 0 {
431 EndianNat { digits: Seq::empty(), endian: endianness(), phantom: PhantomData }
432 } else {
433 let least = (n % B::base()) as int;
434 let rest = n / B::base();
435 let rest_endian = Self::from_nat(rest, (len - 1) as nat);
436 rest_endian.push_least(least)
437 }
438 }
439
440 proof fn base_upper_bound_excl_len(n: nat, len: nat)
441 requires
442 n < base_upper_bound_excl::<B>(len),
443 0 < len,
444 ensures
445 n / B::base() < base_upper_bound_excl::<B>((len - 1) as nat),
446 {
447 reveal(pow);
448 assert(n / B::base() < base_upper_bound_excl::<B>((len - 1) as nat)) by (nonlinear_arith)
449 requires
450 n < B::base() * base_upper_bound_excl::<B>((len - 1) as nat),
451 B::base() > 0,
452 ;
453 }
454
455 pub broadcast proof fn from_nat_properties(n: nat, len: nat)
456 requires
457 n < base_upper_bound_excl::<B>(len),
458 ensures
459 #![trigger Self::from_nat(n, len)]
460 Self::from_nat(n, len).len() == len,
461 Self::from_nat(n, len).endian == endianness(),
462 Self::from_nat(n, len).wf(),
463 decreases len,
464 {
465 if len == 0 {
466 } else {
467 Self::base_upper_bound_excl_len(n, len);
468 let endian_nat = Self::from_nat(n, len);
469 let least = endian_nat.least();
470 Self::from_nat_properties(n / B::base(), (len - 1) as nat);
471 B::base_min();
472 assert(least < B::base()) by (nonlinear_arith)
473 requires
474 B::base() > 0,
475 least == (n % B::base()),
476 ;
477 }
478 }
479
480 pub broadcast proof fn from_nat_to_nat(n: nat, len: nat)
486 requires
487 n < base_upper_bound_excl::<B>(len),
488 ensures
489 #[trigger] Self::from_nat(n, len).to_nat() == n,
490 decreases Self::from_nat(n, len).len(),
491 {
492 reveal(pow);
493 reveal(EndianNat::to_nat);
494 if Self::from_nat(n, len).len() == 0 {
495 } else {
496 let endian_nat = Self::from_nat(n, len);
497 let least = endian_nat.least();
498 let rest = endian_nat.drop_least();
499 assert(rest =~= Self::from_nat(n / B::base(), (len - 1) as nat));
500 Self::base_upper_bound_excl_len(n, len);
501 Self::from_nat_to_nat(n / B::base(), (len - 1) as nat);
502 assert((n % B::base()) + (n / B::base()) * B::base() == n) by (nonlinear_arith)
503 requires
504 B::base() > 0,
505 ;
506 }
507 }
508
509 pub broadcast proof fn to_nat_from_nat(endian_nat: Self)
514 requires
515 endian_nat.wf(),
516 endian_nat.endian == endianness(),
517 ensures
518 #[trigger] Self::from_nat(endian_nat.to_nat(), endian_nat.len()) == endian_nat,
519 decreases endian_nat.len(),
520 {
521 reveal(pow);
522 reveal(EndianNat::to_nat);
523 if endian_nat.len() == 0 {
524 } else {
525 let n = endian_nat.to_nat();
526 let least = endian_nat.least();
527 let rest = endian_nat.drop_least();
528 Self::to_nat_from_nat(rest);
529 assert(least == n % B::base()) by (nonlinear_arith)
530 requires
531 n == rest.to_nat() * B::base() + least,
532 least < B::base(),
533 ;
534 assert(rest.to_nat() == n / B::base()) by (nonlinear_arith)
535 requires
536 n == rest.to_nat() * B::base() + least,
537 least < B::base(),
538 ;
539 }
540 }
541
542 pub broadcast proof fn to_nat_injective(n1: Self, n2: Self)
543 requires
544 n1.wf(),
545 n2.wf(),
546 n1.endian == endianness(),
547 n2.endian == endianness(),
548 n1.len() == n2.len(),
549 #[trigger] n1.to_nat() == #[trigger] n2.to_nat(),
550 ensures
551 n1 == n2,
552 {
553 broadcast use EndianNat::to_nat_from_nat;
554
555 assert(Self::from_nat(n1.to_nat(), n1.len()) == n1);
556 assert(Self::from_nat(n2.to_nat(), n2.len()) == n2);
557 }
558
559 pub broadcast proof fn from_nat_injective(n1: nat, len1: nat, n2: nat, len2: nat)
560 requires
561 n1 < base_upper_bound_excl::<B>(len1),
562 n2 < base_upper_bound_excl::<B>(len2),
563 #[trigger] Self::from_nat(n1, len1) == #[trigger] Self::from_nat(n2, len2),
564 ensures
565 n1 == n2,
566 {
567 broadcast use EndianNat::from_nat_to_nat;
568
569 assert(Self::from_nat(n1, len1).to_nat() == n1);
570 assert(Self::from_nat(n2, len2).to_nat() == n2);
571 }
572
573 #[verifier::opaque]
575 pub open spec fn to_nat_most(self) -> nat
576 decreases self.len(),
577 {
578 if self.len() == 0 {
579 0
580 } else {
581 (self.drop_most().to_nat_most() + self.most() * pow(
582 B::base() as int,
583 (self.len() - 1) as nat,
584 )) as nat
585 }
586 }
587
588 pub broadcast proof fn to_nat_eq_to_nat_most(self)
593 requires
594 self.wf(),
595 ensures
596 #[trigger] self.to_nat() == #[trigger] self.to_nat_most(),
597 decreases self.len(),
598 {
599 reveal(EndianNat::to_nat);
600 reveal(EndianNat::to_nat_most);
601 if self.len() == 0 {
602 } else {
603 if self.drop_most().len() == 0 {
604 calc! {
605 (==)
606 self.to_nat_most(); {
607 assert(self.drop_most().to_nat_most() == 0);
608 assert(self.to_nat_most() == (self.most() * pow(
609 B::base() as int,
610 (self.len() - 1) as nat,
611 )) as nat);
612 }
613 (self.most() * pow(B::base() as int, (self.len() - 1) as nat)) as nat; {
614 reveal(pow);
615 assert((self.most() * pow(B::base() as int, (self.len() - 1) as nat))
616 == self.most()) by (nonlinear_arith)
617 requires
618 pow(B::base() as int, (self.len() - 1) as nat) == 1,
619 self.most() >= 0,
620 ;
621 }
622 self.most(); {}
623 self.least(); {
624 assert(self.drop_least().to_nat() == 0);
625 assert(0 * B::base() == 0);
626 }
627 self.to_nat();
628 };
629 } else {
630 calc! {
631 (==)
632 self.to_nat_most() as int; {}
633 ((self.drop_most().to_nat_most() + self.most() * pow(
634 B::base() as int,
635 (self.len() - 1) as nat,
636 )) as nat) as int; {
637 assert(self.most() >= 0);
638 assert(self.len() > 1);
639 lemma_pow_positive(B::base() as int, (self.len() - 1) as nat);
640 assert(pow(B::base() as int, (self.len() - 1) as nat) >= 0);
641 }
642 self.drop_most().to_nat_most() + self.most() * pow(
643 B::base() as int,
644 (self.len() - 1) as nat,
645 ); {
646 self.drop_most().to_nat_eq_to_nat_most();
647 }
648 self.drop_most().to_nat() + self.most() * pow(
649 B::base() as int,
650 (self.len() - 1) as nat,
651 ); {}
652 self.drop_most().drop_least().to_nat() * B::base() + self.drop_most().least()
653 + self.most() * pow(B::base() as int, (self.len() - 1) as nat); {
654 self.drop_most().drop_least().to_nat_eq_to_nat_most();
655 }
656 self.drop_most().drop_least().to_nat_most() * B::base()
657 + self.drop_most().least() + self.most() * pow(
658 B::base() as int,
659 (self.len() - 1) as nat,
660 ); {
661 assert(self.drop_most().drop_least() == self.drop_least().drop_most());
662 }
663 self.drop_least().drop_most().to_nat_most() * B::base() + self.least()
664 + self.most() * pow(B::base() as int, (self.len() - 1) as nat); {
665 assert(self.most() * pow(B::base() as int, (self.len() - 2) as nat)
666 * B::base() == self.most() * (pow(
667 B::base() as int,
668 (self.len() - 2) as nat,
669 ) * B::base())) by {
670 broadcast use crate::vstd::arithmetic::mul::lemma_mul_is_associative;
671
672 }
673 assert(pow(B::base() as int, (self.len() - 1) as nat) == pow(
674 B::base() as int,
675 (self.len() - 2) as nat,
676 ) * B::base()) by {
677 assert(B::base() == pow(B::base() as int, 1)) by {
678 lemma_pow1(B::base() as int);
679 }
680 lemma_pow_adds(B::base() as int, (self.len() - 2) as nat, 1);
681 }
682 }
683 self.drop_least().drop_most().to_nat_most() * B::base() + (self.most() * pow(
684 B::base() as int,
685 (self.len() - 2) as nat,
686 )) * B::base() + self.least(); {
687 lemma_mul_is_distributive_add_other_way(
688 B::base() as int,
689 self.drop_least().drop_most().to_nat_most() as int,
690 self.most() * pow(B::base() as int, (self.len() - 2) as nat),
691 );
692 }
693 (self.drop_least().drop_most().to_nat_most() + self.most() * pow(
694 B::base() as int,
695 (self.len() - 2) as nat,
696 )) * B::base() + self.least(); {
697 assert((self.drop_least().drop_most().to_nat_most() + self.most() * pow(
698 B::base() as int,
699 (self.len() - 2) as nat,
700 )) == self.drop_least().to_nat_most()) by {
701 lemma_pow_positive(B::base() as int, (self.len() - 2) as nat);
702 };
703 }
704 (self.drop_least().to_nat_most() * B::base() + self.least()) as int; {
705 self.drop_least().to_nat_eq_to_nat_most();
706 }
707 self.to_nat() as int;
708 }
709 }
710 }
711 }
712}
713
714impl<B: Base> EndianNat<B> {
718 pub open spec fn exp<BIG>() -> nat where BIG: BasePow2, B: CompatibleSmallerBaseFor<BIG> {
724 BIG::bits() / B::bits()
725 }
726
727 pub broadcast proof fn exp_properties<BIG>() where
728 BIG: BasePow2,
729 B: CompatibleSmallerBaseFor<BIG>,
730
731 ensures
732 #![trigger Self::exp()]
733 base_upper_bound_excl::<B>(Self::exp()) == BIG::base(),
734 Self::exp() > 0,
735 {
736 broadcast use crate::vstd::arithmetic::div_mod::group_div_basics;
737
738 assert(forall|x| x != 0 ==> #[trigger] (0int / x) == 0);
739 broadcast use crate::vstd::arithmetic::power::lemma_pow_multiplies;
740
741 B::bits_to_base();
742
743 calc! {
744 (==)
745 BIG::bits(); {
746 crate::vstd::arithmetic::div_mod::lemma_fundamental_div_mod(
747 BIG::bits() as int,
748 B::bits() as int,
749 );
750 }
751 B::bits() * (BIG::bits() / B::bits()) + (BIG::bits() % B::bits()); {
752 B::compatible();
753 }
754 B::bits() * (BIG::bits() / B::bits()); {}
755 B::bits() * Self::exp();
756 }
757 calc! {
758 (==)
759 base_upper_bound_excl::<B>(Self::exp()); {
760 crate::vstd::arithmetic::power::lemma_pow_multiplies(2, B::bits(), Self::exp());
761 crate::vstd::arithmetic::power2::lemma_pow2(B::bits());
762 }
763 pow(2, B::bits() * Self::exp()) as int; {}
764 pow(2, BIG::bits()) as int; {
765 crate::vstd::arithmetic::power2::lemma_pow2(BIG::bits());
766 }
767 pow2(BIG::bits()) as int; {
768 BIG::bits_to_base();
769 }
770 BIG::base() as int;
771 }
772
773 B::compatible();
774 assert((BIG::bits() / B::bits()) != 0);
775 BIG::bits_to_base();
776
777 }
778
779 pub open spec fn from_big<BIG>(n: EndianNat<BIG>) -> Self where
782 BIG: BasePow2,
783 B: CompatibleSmallerBaseFor<BIG>,
784
785 decreases n.len(),
786 {
787 if n.len() == 0 {
788 EndianNat::new(n.endian, Seq::empty())
789 } else {
790 Self::from_big(n.drop_least()).append_least(EndianNat::from_nat(n.least(), Self::exp()))
791 }
792 }
793
794 pub broadcast proof fn from_big_properties<BIG>(n: EndianNat<BIG>) where
795 BIG: BasePow2,
796 B: CompatibleSmallerBaseFor<BIG>,
797
798 requires
799 n.wf(),
800 n.endian == endianness(),
801 ensures
802 #![trigger Self::from_big(n)]
803 Self::from_big(n).wf(),
804 Self::from_big(n).endian == endianness(),
805 Self::from_big(n).len() == n.len() * Self::exp(),
806 Self::from_big(n).to_nat() == n.to_nat(),
807 decreases n.len(),
808 {
809 reveal(EndianNat::to_nat);
810 broadcast use EndianNat::exp_properties;
811
812 if n.len() == 0 {
813 } else {
814 let least = n.least();
815 let rest = n.drop_least();
816 Self::from_big_properties(rest);
817 Self::from_nat_properties(least, Self::exp());
818 assert(Self::from_big(n).len() == n.len() * Self::exp()) by (nonlinear_arith)
819 requires
820 Self::from_big(n).len() == (n.len() - 1) * Self::exp() + Self::exp(),
821 ;
822 let small_least = EndianNat::from_nat(least, Self::exp());
823 let small_rest = Self::from_big(rest);
824 Self::to_nat_append_least(small_rest, small_least);
825 Self::from_nat_to_nat(least, Self::exp());
826 }
827 }
828
829 #[verifier::opaque]
832 pub open spec fn to_big<BIG>(n: EndianNat<B>) -> EndianNat<BIG> where
833 BIG: BasePow2,
834 B: CompatibleSmallerBaseFor<BIG>,
835
836 recommends
837 n.len() % Self::exp() == 0,
838 decreases n.len(),
839 when n.len() % Self::exp() == 0
840 via Self::to_big_decreases
841 {
842 if n.len() == 0 {
843 EndianNat::new(n.endian, Seq::empty())
844 } else {
845 Self::to_big(n.skip_least(Self::exp())).append_least(
846 EndianNat::new(n.endian, seq![n.take_least(Self::exp()).to_nat() as int]),
847 )
848 }
849 }
850
851 #[via_fn]
852 proof fn to_big_decreases<BIG>(n: EndianNat<B>) where
853 BIG: BasePow2,
854 B: CompatibleSmallerBaseFor<BIG>,
855 {
856 broadcast use EndianNat::exp_properties;
857
858 if n.len() != 0 {
859 assert(Self::exp() <= n.len()) by {
860 broadcast use crate::vstd::arithmetic::div_mod::lemma_mod_is_zero;
861
862 }
863 assert(n.skip_least(Self::exp()).len() < n.len());
864 }
865 }
866
867 pub broadcast proof fn to_big_properties<BIG>(n: EndianNat<B>) where
868 BIG: BasePow2,
869 B: CompatibleSmallerBaseFor<BIG>,
870
871 requires
872 n.wf(),
873 n.endian == endianness(),
874 n.len() % Self::exp() == 0,
875 ensures
876 #![trigger Self::to_big(n)]
877 Self::to_big(n).wf(),
878 Self::to_big(n).endian == endianness(),
879 Self::to_big(n).len() == n.len() / Self::exp(),
880 Self::to_big(n).to_nat() == n.to_nat(),
881 decreases n.len(),
882 {
883 reveal(EndianNat::to_big);
884 reveal(EndianNat::to_nat);
885 broadcast use EndianNat::exp_properties;
886
887 if n.len() == 0 {
888 } else {
889 let least = n.take_least(Self::exp());
890 let rest = n.skip_least(Self::exp());
891 assert(n.len() >= Self::exp()) by (nonlinear_arith)
892 requires
893 n.len() % Self::exp() == 0,
894 Self::exp() > 0,
895 n.len() > 0,
896 ;
897 assert(rest.len() % Self::exp() == 0) by (nonlinear_arith)
898 requires
899 rest.len() == n.len() - Self::exp(),
900 n.len() % Self::exp() == 0,
901 ;
902 Self::to_big_properties(rest);
903 Self::to_nat_properties(least);
904 let big_least = EndianNat::<BIG>::new(n.endian, seq![least.to_nat() as int]);
905 let big_rest = Self::to_big(rest);
906 assert(Self::to_big(n).to_nat() == n.to_nat()) by {
907 assert(big_rest.append_least(big_least).to_nat() == (big_rest.to_nat()
908 * base_upper_bound_excl::<BIG>(big_least.len())) + big_least.to_nat()) by {
909 EndianNat::<BIG>::to_nat_append_least(big_rest, big_least);
910 }
911 assert(big_least.to_nat() == least.to_nat()) by {
912 assert(big_least.least() == least.to_nat());
913 reveal_with_fuel(EndianNat::to_nat, 2);
914 }
915 assert(n.to_nat() == (rest.to_nat() * base_upper_bound_excl::<B>(Self::exp()))
916 + least.to_nat()) by {
917 assert(n =~= rest.append_least(least));
918 EndianNat::<B>::to_nat_append_least(rest, least);
919 }
920 assert(base_upper_bound_excl::<B>(Self::exp()) == base_upper_bound_excl::<BIG>(
921 big_least.len(),
922 )) by {
923 broadcast use lemma_pow1;
924
925 }
926 }
927 assert(Self::to_big(n).len() == n.len() / Self::exp()) by {
928 assert(Self::to_big(n).len() == n.len() / Self::exp()) by (nonlinear_arith)
929 requires
930 big_rest.len() == rest.len() / Self::exp(),
931 Self::to_big(n).len() == big_rest.len() + 1,
932 n.len() == rest.len() + Self::exp(),
933 Self::exp() > 0,
934 ;
935 }
936 }
937
938 }
939
940 pub broadcast proof fn to_big_from_big<BIG>(n: EndianNat<B>) where
945 BIG: BasePow2,
946 B: CompatibleSmallerBaseFor<BIG>,
947
948 requires
949 n.wf(),
950 n.endian == endianness(),
951 n.len() % Self::exp() == 0,
952 ensures
953 #[trigger] Self::from_big(Self::to_big(n)) == n,
954 decreases n.len(),
955 {
956 reveal(EndianNat::to_big);
957 broadcast use EndianNat::exp_properties;
958
959 if n.len() == 0 {
960 } else {
961 let least = n.take_least(Self::exp());
962 let rest = n.skip_least(Self::exp());
963 assert(n.len() >= Self::exp()) by (nonlinear_arith)
964 requires
965 n.len() % Self::exp() == 0,
966 Self::exp() > 0,
967 n.len() > 0,
968 ;
969 assert(rest.len() % Self::exp() == 0) by (nonlinear_arith)
970 requires
971 rest.len() == n.len() - Self::exp(),
972 n.len() % Self::exp() == 0,
973 ;
974 Self::to_big_from_big(rest);
975 let big = Self::to_big(n);
976 assert(big =~= Self::to_big(rest).append_least(
977 EndianNat::new(n.endian, seq![least.to_nat() as int]),
978 ));
979 let big_least = big.least();
980 let big_rest = big.drop_least();
981 assert(big_rest =~= Self::to_big(rest));
982 assert(Self::from_big(big_rest) == rest);
983 Self::to_nat_from_nat(least);
984 assert(EndianNat::<B>::from_nat(big_least, Self::exp()) == least);
985 }
986 }
987
988 pub broadcast proof fn from_big_to_big<BIG>(n: EndianNat<BIG>) where
993 BIG: BasePow2,
994 B: CompatibleSmallerBaseFor<BIG>,
995
996 requires
997 n.wf(),
998 n.endian == endianness(),
999 ensures
1000 #[trigger] Self::to_big(Self::from_big(n)) == n,
1001 decreases n.len(),
1002 {
1003 reveal(EndianNat::to_big);
1004 reveal(EndianNat::to_nat);
1005 broadcast use EndianNat::exp_properties;
1006
1007 if n.len() == 0 {
1008 Self::from_big_properties(n);
1009 let small = Self::from_big(n);
1010 assert(small.len() % Self::exp() == 0) by (nonlinear_arith)
1011 requires
1012 small.len() == 0,
1013 Self::exp() > 0,
1014 ;
1015 Self::to_big_properties(small);
1016 assert(Self::to_big(Self::from_big(n)).digits == n.digits);
1017 assert(Self::to_big(Self::from_big(n)).endian == n.endian);
1018 } else {
1019 let least = n.least();
1020 let rest = n.drop_least();
1021 Self::from_big_to_big(rest);
1022 Self::from_big_properties(rest);
1023
1024 let small = Self::from_big(n);
1025 let small_least = small.take_least(Self::exp());
1026 let small_rest = small.skip_least(Self::exp());
1027 Self::from_nat_properties(least, Self::exp());
1028 let from_nat_least = EndianNat::<B>::from_nat(least, Self::exp());
1029 assert(small_least =~= from_nat_least);
1030 EndianNat::<B>::from_nat_to_nat(least, Self::exp());
1031
1032 assert(small_rest =~= Self::from_big(rest));
1033 assert(small_rest.len() % Self::exp() == 0) by (nonlinear_arith)
1034 requires
1035 small_rest.len() == rest.len() * Self::exp(),
1036 Self::exp() > 0,
1037 ;
1038
1039 Self::from_big_properties(n);
1040 assert(small.len() % Self::exp() == 0) by (nonlinear_arith)
1041 requires
1042 small.len() == n.len() * Self::exp(),
1043 Self::exp() > 0,
1044 ;
1045 }
1046 }
1047
1048 pub broadcast proof fn to_big_injective<BIG>(n1: EndianNat<B>, n2: EndianNat<B>) where
1049 BIG: BasePow2,
1050 B: CompatibleSmallerBaseFor<BIG>,
1051
1052 requires
1053 n1.wf(),
1054 n2.wf(),
1055 n1.endian == endianness(),
1056 n2.endian == endianness(),
1057 n1.len() % Self::exp() == 0,
1058 n2.len() % Self::exp() == 0,
1059 #[trigger] Self::to_big(n1) == #[trigger] Self::to_big(n2),
1060 ensures
1061 n1 == n2,
1062 {
1063 broadcast use EndianNat::to_big_from_big;
1064
1065 assert(Self::from_big(Self::to_big(n1)) == n1);
1066 assert(Self::from_big(Self::to_big(n2)) == n2);
1067 }
1068
1069 pub broadcast proof fn from_big_injective<BIG>(n1: EndianNat<BIG>, n2: EndianNat<BIG>) where
1070 BIG: BasePow2,
1071 B: CompatibleSmallerBaseFor<BIG>,
1072
1073 requires
1074 n1.wf(),
1075 n2.wf(),
1076 n1.endian == endianness(),
1077 n2.endian == endianness(),
1078 #[trigger] Self::from_big(n1) == #[trigger] Self::from_big(n2),
1079 ensures
1080 n1 == n2,
1081 {
1082 broadcast use EndianNat::from_big_to_big;
1083
1084 assert(Self::to_big(Self::from_big(n1)) == n1);
1085 assert(Self::to_big(Self::from_big(n2)) == n2);
1086 }
1087
1088 pub proof fn to_big_single<BIG>(x: EndianNat<B>) where
1089 BIG: BasePow2,
1090 B: CompatibleSmallerBaseFor<BIG>,
1091
1092 requires
1093 x.len() == Self::exp(),
1094 x.len() > 0,
1095 ensures
1096 Self::to_big(x).len() == 1,
1097 Self::to_big(x).index(0) == x.to_nat() as int,
1098 {
1099 broadcast use EndianNat::exp_properties;
1100
1101 reveal(EndianNat::to_big);
1102 assert(x =~= x.take_least(Self::exp()));
1103 assert(Self::to_big(x) =~= Self::to_big(x.skip_least(Self::exp())).append_least(
1104 EndianNat::new(x.endian, seq![x.take_least(Self::exp()).to_nat() as int]),
1105 ));
1106 }
1107}
1108
1109pub open spec fn to_big_from_digits<BIG, B>(n: Seq<B>) -> EndianNat<BIG> where
1113 BIG: BasePow2,
1114 B: CompatibleSmallerBaseFor<BIG> + Integer,
1115 {
1116 EndianNat::<B>::to_big::<BIG>(EndianNat::<B>::new(endianness(), n.map(|i, d| d as int)))
1117}
1118
1119impl Base for u8 {
1122 open spec fn base() -> nat {
1123 u8::MAX as nat + 1
1124 }
1125
1126 proof fn base_min() {
1127 }
1128}
1129
1130impl Base for u64 {
1131 open spec fn base() -> nat {
1132 u64::MAX as nat + 1
1133 }
1134
1135 proof fn base_min() {
1136 }
1137}
1138
1139impl Base for usize {
1140 open spec fn base() -> nat {
1141 usize::MAX as nat + 1
1142 }
1143
1144 proof fn base_min() {
1145 }
1146}
1147
1148impl BasePow2 for u8 {
1149 open spec fn bits() -> nat {
1150 8
1151 }
1152
1153 proof fn bits_to_base() {
1154 crate::vstd::arithmetic::power2::lemma2_to64();
1155 }
1156}
1157
1158impl BasePow2 for u64 {
1159 open spec fn bits() -> nat {
1160 64
1161 }
1162
1163 proof fn bits_to_base() {
1164 crate::vstd::arithmetic::power2::lemma2_to64();
1165 }
1166}
1167
1168impl BasePow2 for usize {
1169 open spec fn bits() -> nat {
1170 usize::BITS as nat
1171 }
1172
1173 proof fn bits_to_base() {
1174 crate::vstd::arithmetic::power2::lemma2_to64();
1175 }
1176}
1177
1178impl CompatibleSmallerBaseFor<u64> for u8 {
1179 proof fn compatible() {
1180 }
1181}
1182
1183impl CompatibleSmallerBaseFor<usize> for u8 {
1184 proof fn compatible() {
1185 }
1186}
1187
1188pub broadcast group group_endian_nat_axioms {
1189 EndianNat::from_nat_properties,
1190 EndianNat::to_nat_properties,
1191 EndianNat::from_nat_to_nat,
1192 EndianNat::to_nat_from_nat,
1193 EndianNat::to_nat_injective,
1194 EndianNat::from_nat_injective,
1195 EndianNat::to_nat_eq_to_nat_most,
1196 EndianNat::exp_properties,
1197 EndianNat::to_big_properties,
1198 EndianNat::from_big_properties,
1199 EndianNat::from_big_to_big,
1200 EndianNat::to_big_from_big,
1201 EndianNat::to_big_injective,
1202 EndianNat::from_big_injective,
1203}
1204
1205}