1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
#![allow(internal_features)]

#[allow(unused_imports)]
use super::prelude::*;

#[cfg(not(feature = "std"))]
macro_rules! println {
    ($($arg:tt)*) => {};
}
verus! {

// TODO: remove this
pub proof fn assume(b: bool)
    ensures
        b,
{
    admit();
}

// TODO: remove this
#[verifier(custom_req_err("assertion failure"))]
pub proof fn assert(b: bool)
    requires
        b,
    ensures
        b,
{
}

pub proof fn affirm(b: bool)
    requires
        b,
{
}

// An artificial trigger that can be used in case no expression naturally serves as a trigger
pub open spec fn trigger<A>(a: A) -> bool {
    true
}

// TODO: when default trait methods are supported, most of these should be given defaults
pub trait ForLoopGhostIterator {
    type ExecIter;

    type Item;

    type Decrease;

    // Connect the ExecIter to the GhostIter
    // Always enabled
    // Always true before and after each loop iteration
    spec fn exec_invariant(&self, exec_iter: &Self::ExecIter) -> bool;

    // Additional optional invariants about the GhostIter
    // May be disabled with #[verifier::no_auto_loop_invariant]
    // If enabled, always true before and after each loop iteration
    // (When the analysis can infer a spec initial value, the analysis places the value in init)
    spec fn ghost_invariant(&self, init: Option<&Self>) -> bool;

    // True upon loop exit
    spec fn ghost_ensures(&self) -> bool;

    // Value used by default for decreases clause when no explicit decreases clause is provided
    // (the user can override this with an explicit decreases clause).
    // (If there's no appropriate decrease, this can return None,
    // and the user will have to provide an explicit decreases clause.)
    spec fn ghost_decrease(&self) -> Option<Self::Decrease>;

    // If there will be Some next value, and we can make a useful guess as to what the next value
    // will be, return Some of it.
    // Otherwise, return None.
    // TODO: in the long term, we could have VIR insert an assertion (or warning)
    // that ghost_peek_next returns non-null if it is used in the invariants.
    // (this will take a little bit of engineering since the syntax macro blindly inserts
    // let bindings using ghost_peek_next, even if they aren't needed, and we only learn
    // what is actually needed later in VIR.)
    spec fn ghost_peek_next(&self) -> Option<Self::Item>;

    // At the end of the for loop, advance to the next position.
    // Future TODO: this may be better as a proof function
    spec fn ghost_advance(&self, exec_iter: &Self::ExecIter) -> Self where Self: Sized;
}

pub trait ForLoopGhostIteratorNew {
    type GhostIter;

    // Create a new ghost iterator from an exec iterator
    // Future TODO: this may be better as a proof function
    spec fn ghost_iter(&self) -> Self::GhostIter;
}

#[cfg(verus_keep_ghost)]
pub trait FnWithRequiresEnsures<Args, Output>: Sized {
    spec fn requires(self, args: Args) -> bool;

    spec fn ensures(self, args: Args, output: Output) -> bool;
}

#[cfg(verus_keep_ghost)]
impl<Args: core::marker::Tuple, Output, F: FnOnce<Args, Output = Output>> FnWithRequiresEnsures<
    Args,
    Output,
> for F {
    #[verifier::inline]
    open spec fn requires(self, args: Args) -> bool {
        call_requires(self, args)
    }

    #[verifier::inline]
    open spec fn ensures(self, args: Args, output: Output) -> bool {
        call_ensures(self, args, output)
    }
}

// Non-statically-determined function calls are translated *internally* (at the VIR level)
// to this function call. This should not actually be called directly by the user.
// That is, Verus treats `f(x, y)` as `exec_nonstatic_call(f, (x, y))`.
// (Note that this function wouldn't even satisfy the borrow-checker if you tried to
// use it with a `&F` or `&mut F`, but this doesn't matter since it's only used at VIR.)
#[cfg(verus_keep_ghost)]
#[verifier(custom_req_err("Call to non-static function fails to satisfy `callee.requires(args)`"))]
#[doc(hidden)]
#[verifier::external_body]
#[rustc_diagnostic_item = "verus::vstd::vstd::exec_nonstatic_call"]
fn exec_nonstatic_call<Args: core::marker::Tuple, Output, F>(f: F, args: Args) -> (output:
    Output) where F: FnOnce<Args, Output = Output>
    requires
        call_requires(f, args),
    ensures
        call_ensures(f, args, output),
{
    unimplemented!();
}

/// A tool to check one's reasoning while writing complex spec functions.
/// Not intended to be used as a mechanism for instantiating quantifiers, `spec_affirm` should
/// be removed from spec functions once they are complete.
///
/// ## Example
///
/// ```rust
/// #[spec(checked)] fn some_predicate(a: nat) -> bool {
///     recommends(a < 100);
///     if (a >= 50) {
///         let _ = spec_affirm(50 <= a && a < 100);
///         a >= 75
///     } else {
///         let _ = spec_affirm(a < 50);
///         // let _ = spec_affirm(a < 40); would raise a recommends note here
///         a < 25
///     }
/// }
/// ```
pub closed spec fn spec_affirm(b: bool) -> bool
    recommends
        b,
{
    b
}

/// In spec, all types are inhabited
#[verifier::external_body]  /* vattr */
#[allow(dead_code)]
pub closed spec fn arbitrary<A>() -> A {
    unimplemented!()
}

#[verifier::external_body]  /* vattr */
#[allow(dead_code)]
pub proof fn proof_from_false<A>() -> (tracked a: A) {
    requires(false);
    unimplemented!()
}

#[verifier::external_body]  /* vattr */
#[allow(dead_code)]
pub fn unreached<A>() -> A
    requires
        false,
{
    panic!("unreached_external")
}

#[allow(unused_variables)]  // when built with cfg(not(feature = "std"))
#[verifier::external_body]  /* vattr */
pub fn print_u64(i: u64) {
    println!("{}", i);
}

#[verifier::external_body]
pub fn runtime_assert(b: bool)
    requires
        b,
{
    runtime_assert_internal(b);
}

} // verus!
#[inline(always)]
#[cfg_attr(verus_keep_ghost, verifier::external)]
fn runtime_assert_internal(b: bool) {
    assert!(b);
}

/// Allows you to prove a boolean predicate by assuming its negation and proving
/// a contradiction.
///
/// `assert_by_contradiction!(b, { /* proof */ });`
/// Equivalent to writing `if !b { /* proof */; assert(false); }`
/// but is more concise and documents intent.
///
/// ```rust
/// assert_by_contradiction!(b, {
///     // assume !b here
///     // prove `false`
/// });
/// ```

#[macro_export]
macro_rules! assert_by_contradiction {
    ($($a:tt)*) => {
        verus_proof_macro_exprs!($crate::assert_by_contradiction_internal!($($a)*))
    }
}

#[doc(hidden)]
#[macro_export]
macro_rules! assert_by_contradiction_internal {
    ($predicate:expr, $bblock:block) => {
        ::builtin::assert_by($predicate, {
            if !$predicate {
                $bblock::builtin::assert_(false);
            }
        });
    };
}

/// Macro to help set up boilerplate for specifying invariants when using
/// invariant-based datatypes.
///
/// This currently supports the `AtomicInvariant` and `LocalInvariant`
/// types, as well as all the `atomic_ghost` types (e.g., `AtomicU64`, `AtomicBool`, and so on).
/// It is important to first understand how these types work.
/// In particular, `LocalInvariant` (for example) takes three type parameters,
/// `K`, `V`, and `Pred: InvariantPredicate`.
/// The `InvariantPredicate` trait lets the user specify an invariant at the static type
/// level, while `K` allows the user to configure the invariant upon construction.
/// `AtomicInvariant` uses the same system, and the `atomic_ghost` types are similar
/// but use a different trait (`AtomicInvariantPredicate`).
///
/// However, setting all this up in a typical application tends to involve a bit
/// of boilerplate. That's where this macro comes in.
///
/// # Usage
///
/// The `struct_with_invariants!` macro is used at the item level, and it should contains
/// a single struct declaration followed by a single declaration of a `spec` function
/// returning `bool`. However, this spec function should not contain a boolean predicate
/// as usual, but instead a series of _invariant declarations_.
/// Each invariant declaration applies to a single field of the struct.
///
/// ```rust
/// struct_with_invariants!{
///     (pub)? struct $struct_name (<...>)? (where ...)? {
///         ( (pub)? $field_name: $type, )*
///     }
///
///     (pub)? (open|closed)? spec fn(&self (, ...)?) $fn_name {
///         ( InvariantDecl | BoolPredicateDecl )*
///     }
/// }
/// ```
///
/// A field of the struct, if it uses a supported type, may leave the type _incomplete_ by
/// omitting some of its type parameters.
/// The following are valid incomplete types:
///
///  * `LocalInvariant<_, V, _>`
///  * `AtomicInvariant<_, V, _>`
///  * `AtomicBool<_, G, _>`
///  * `AtomicU64<_, G, _>`
///    * ... and so on for the other `atomic_ghost` types.
///
/// There must be exactly one invariant declaration for each incomplete type used in the
/// struct declaration. The macro uses invariant declarations to fill in the type parameters.
///
/// The user can also provide boolean predicate declarations, which are copied verbatim
/// into the `$fn_name` definition. This is a convenience, since it is common to want
/// to add extra conditions, and it is fairly straightforward.
/// The complex part of the macro expansion in the invariant declarations.
///
/// ```rust
/// BoolPredicateDecl  :=  predicate { $bool_expr }
///
/// InvariantDecl  :=
///     invariant on $field_name
///         ( with ($dependencies) )?
///         ( forall | ($ident: $type, )* | )?
///         ( where ($where_expr) )?
///         ( specifically ($specifically_expr) )?
///         is ($params) {
///             $bool_expr
///         }
/// ```
///
/// In the `InvariantDecl`, the user always needs to provide the following data:
///
///  * The `$field_name` is the field that this invariant applies to
///     (which must have an incomplete type as described above)
///  * The `$params` are the values constrained by the invariant.
///      * For a `LocalInvariant<V>` or `AtomicInvariant<V>`, this should be a single
///        parameter of type `V`.
///      * For an `atomic_ghost` type, this should consist of two parameters,
///        first the primitive type stored by the atomic, and secondly one of the ghost type, `G`.
///        (For example, the type `AtomicBool<_, G, _>` should have two parameters
///        here, `b: bool, g: G`.)
///  * Finally, the `$bool_expr` is the invariant predicate, which may reference any of
///     the fields declared in `$dependencies`, or any of the params.
///
/// The other input clauses handle additional complexities that often comes up.
/// For example, it is often necessary for the invariant to refer to the values of other fields
/// in the struct.
///
///  * The `with` input gives the list of field names (other fields
///     from the struct definition) that may be referenced from
///     the body of this invariant.
///     The graph of dependencies across all fields must be acyclic.
///
/// Finally, when the field is a _container_ type, e.g., `vec: Vec<AtomicU64<_, G, _>>` or
/// `opt: Option<AtomicU64<_, G, _>>`, there are some additional complexities.
/// We might need the invariant to be conditional (e.g., for an optional, the invariant would only
/// exist if `opt.is_Some()`).
/// We might need to quantify over a variable (e.g., in a vector, we want to specify an invariant
/// for each element, element `i` where `0 <= i < vec.len()`).
/// Finally, we need to indicate the value actually getting the invariant (e.g., `self.vec[i]`).
///
/// * The `forall` lets you specify additional bound variables. Everything after the `forall`---the
///   `where`, the `specifically`, and finally the `$bool_expr$`---can all reference these bound variables.
/// * The `where` lets you specify an additional hypothesis that the invariant is dependent on.
/// * The `specifically` lets you indicate the value getting the invariant.
///
/// This all roughly means, "forall instantiations of the quantified variables, if the condition `$where_expr` holds,
/// then the value given by `$specifically_expr` has the invariant given by `$bool_expr`.
/// See the detailed information on the macro-expansion below for more details.
///
/// Given all the information from the `InvariantDecl`, the macro fills in the `_` placeholders as follows:
///
///  * The macro fills in the `K` type as the types of the fields marked as dependencies and
///    the quantified variables in the forall (packing all these types into a tuple if necessary).
///  * The macro fills in the `Pred` type by creating a new type and implementing the appropriate
///    trait with the user-provided predicate.
///
/// # Example (TODO)
///
/// # Example using a container type (TODO)
///
/// # Macro Expansion (TODO)
pub use builtin_macros::struct_with_invariants;

verus! {

use super::view::View;

#[cfg(feature = "alloc")]
#[verifier::external]
pub trait VecAdditionalExecFns<T> {
    fn set(&mut self, i: usize, value: T);

    fn set_and_swap(&mut self, i: usize, value: &mut T);
}

#[cfg(feature = "alloc")]
impl<T> VecAdditionalExecFns<T> for alloc::vec::Vec<T> {
    /// Replacement for `self[i] = value;` (which Verus does not support for technical reasons)
    #[verifier::external_body]
    fn set(&mut self, i: usize, value: T)
        requires
            i < old(self).len(),
        ensures
            self@ == old(self)@.update(i as int, value),
    {
        self[i] = value;
    }

    /// Replacement for `swap(&mut self[i], &mut value)` (which Verus does not support for technical reasons)
    #[verifier::external_body]
    fn set_and_swap(&mut self, i: usize, value: &mut T)
        requires
            i < old(self).len(),
        ensures
            self@ == old(self)@.update(i as int, *old(value)),
            *value == old(self)@.index(i as int),
    {
        core::mem::swap(&mut self[i], value);
    }
}

} // verus!