1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
use core::marker;

#[allow(unused_imports)]
use super::pervasive::*;
#[allow(unused_imports)]
use super::prelude::*;

verus! {

/// `Seq<A>` is a sequence type for specifications.
/// To use a "sequence" in compiled code, use an `exec` type like `vec::Vec`
/// that has `Seq<A>` as its specification type.
///
/// An object `seq: Seq<A>` has a length, given by [`seq.len()`](Seq::len),
/// and a value at each `i` for `0 <= i < seq.len()`, given by [`seq[i]`](Seq::index).
///
/// Sequences can be constructed in a few different ways:
///  * [`Seq::empty`] construct an empty sequence (`len() == 0`)
///  * [`Seq::new`] construct a sequence of a given length, initialized according
///     to a given function mapping indices `i` to values `A`.
///  * The [`seq!`] macro, to construct small sequences of a fixed size (analagous to the
///     [`std::vec!`] macro).
///  * By manipulating an existing sequence with [`Seq::push`], [`Seq::update`],
///    or [`Seq::add`].
///
/// To prove that two sequences are equal, it is usually easiest to use the
/// extensional equality operator `=~=`.
#[verifier::external_body]
#[verifier::ext_equal]
#[verifier::accept_recursive_types(A)]
pub struct Seq<A> {
    dummy: marker::PhantomData<A>,
}

impl<A> Seq<A> {
    /// An empty sequence (i.e., a sequence of length 0).
    #[rustc_diagnostic_item = "verus::vstd::seq::Seq::empty"]
    pub spec fn empty() -> Seq<A>;

    /// Construct a sequence `s` of length `len` where entry `s[i]` is given by `f(i)`.
    #[rustc_diagnostic_item = "verus::vstd::seq::Seq::new"]
    pub spec fn new(len: nat, f: impl Fn(int) -> A) -> Seq<A>;

    /// The length of a sequence.
    #[rustc_diagnostic_item = "verus::vstd::seq::Seq::len"]
    pub spec fn len(self) -> nat;

    /// Gets the value at the given index `i`.
    ///
    /// If `i` is not in the range `[0, self.len())`, then the resulting value
    /// is meaningless and arbitrary.
    #[rustc_diagnostic_item = "verus::vstd::seq::Seq::index"]
    pub spec fn index(self, i: int) -> A
        recommends
            0 <= i < self.len(),
    ;

    /// `[]` operator, synonymous with `index`
    #[verifier::inline]
    pub open spec fn spec_index(self, i: int) -> A
        recommends
            0 <= i < self.len(),
    {
        self.index(i)
    }

    /// Appends the value `a` to the end of the sequence.
    /// This always increases the length of the sequence by 1.
    /// This often requires annotating the type of the element literal in the sequence,
    /// e.g., `10int`.
    ///
    /// ## Example
    ///
    /// ```rust
    /// proof fn push_test() {
    ///     assert(seq![10int, 11, 12].push(13) =~= seq![10, 11, 12, 13]);
    /// }
    /// ```
    #[rustc_diagnostic_item = "verus::vstd::seq::Seq::push"]
    pub spec fn push(self, a: A) -> Seq<A>;

    /// Updates the sequence at the given index, replacing the element with the given
    /// value, and leaves all other entries unchanged.
    ///
    /// ## Example
    ///
    /// ```rust
    /// proof fn update_test() {
    ///     let s = seq![10, 11, 12, 13, 14];
    ///     let t = s.update(2, -5);
    ///     assert(t =~= seq![10, 11, -5, 13, 14]);
    /// }
    /// ```
    #[rustc_diagnostic_item = "verus::vstd::seq::Seq::update"]
    pub spec fn update(self, i: int, a: A) -> Seq<A>
        recommends
            0 <= i < self.len(),
    ;

    /// DEPRECATED: use =~= or =~~= instead.
    /// Returns `true` if the two sequences are pointwise equal, i.e.,
    /// they have the same length and the corresponding values are equal
    /// at each index. This is equivalent to the sequences being actually equal
    /// by [`axiom_seq_ext_equal`].
    ///
    /// To prove that two sequences are equal via extensionality, it may be easier
    /// to use the general-purpose `=~=` or `=~~=` or
    /// to use the [`assert_seqs_equal!`](crate::seq_lib::assert_seqs_equal) macro,
    /// rather than using `.ext_equal` directly.
    #[cfg_attr(not(verus_verify_core), deprecated = "use =~= or =~~= instead")]
    #[rustc_diagnostic_item = "verus::vstd::seq::Seq::ext_equal"]
    pub open spec fn ext_equal(self, s2: Seq<A>) -> bool {
        self =~= s2
    }

    /// Returns a sequence for the given subrange.
    ///
    /// ## Example
    ///
    /// ```rust
    /// proof fn subrange_test() {
    ///     let s = seq![10int, 11, 12, 13, 14];
    ///     //                      ^-------^
    ///     //           0      1   2   3   4   5
    ///     let sub = s.subrange(2, 4);
    ///     assert(sub =~= seq![12, 13]);
    /// }
    /// ```
    #[rustc_diagnostic_item = "verus::vstd::seq::Seq::subrange"]
    pub spec fn subrange(self, start_inclusive: int, end_exclusive: int) -> Seq<A>
        recommends
            0 <= start_inclusive <= end_exclusive <= self.len(),
    ;

    /// Returns a sequence containing only the first n elements of the original sequence
    #[verifier::inline]
    pub open spec fn take(self, n: int) -> Seq<A> {
        self.subrange(0, n)
    }

    /// Returns a sequence without the first n elements of the original sequence
    #[verifier::inline]
    pub open spec fn skip(self, n: int) -> Seq<A> {
        self.subrange(n, self.len() as int)
    }

    /// Concatenates the sequences.
    ///
    /// ## Example
    ///
    /// ```rust
    /// proof fn add_test() {
    ///     assert(seq![10int, 11].add(seq![12, 13, 14])
    ///             =~= seq![10, 11, 12, 13, 14]);
    /// }
    /// ```
    #[rustc_diagnostic_item = "verus::vstd::seq::Seq::add"]
    pub spec fn add(self, rhs: Seq<A>) -> Seq<A>;

    /// `+` operator, synonymous with `add`
    #[verifier::inline]
    pub open spec fn spec_add(self, rhs: Seq<A>) -> Seq<A> {
        self.add(rhs)
    }

    /// Returns the last element of the sequence.
    #[rustc_diagnostic_item = "verus::vstd::seq::Seq::last"]
    pub open spec fn last(self) -> A
        recommends
            0 < self.len(),
    {
        self[self.len() as int - 1]
    }

    /// Returns the first element of the sequence.
    #[rustc_diagnostic_item = "vstd::seq::Seq::first"]
    pub open spec fn first(self) -> A
        recommends
            0 < self.len(),
    {
        self[0]
    }
}

// Trusted axioms
pub broadcast proof fn axiom_seq_index_decreases<A>(s: Seq<A>, i: int)
    requires
        0 <= i < s.len(),
    ensures
        #[trigger] (decreases_to!(s => s[i])),
{
    admit();
}

pub proof fn axiom_seq_len_decreases<A>(s1: Seq<A>, s2: Seq<A>)
    requires
        s2.len() < s1.len(),
        forall|i2: int|
            0 <= i2 < s2.len() && #[trigger] trigger(s2[i2]) ==> exists|i1: int|
                0 <= i1 < s1.len() && s1[i1] == s2[i2],
    ensures
        decreases_to!(s1 => s2),
{
    admit();
}

pub broadcast proof fn axiom_seq_subrange_decreases<A>(s: Seq<A>, i: int, j: int)
    requires
        0 <= i <= j <= s.len(),
        s.subrange(i, j).len() < s.len(),
    ensures
        #[trigger] (decreases_to!(s => s.subrange(i, j))),
{
    broadcast use axiom_seq_subrange_len, axiom_seq_subrange_index;

    let s2 = s.subrange(i, j);
    assert forall|i2: int| 0 <= i2 < s2.len() && #[trigger] trigger(s2[i2]) implies exists|i1: int|
        0 <= i1 < s.len() && s[i1] == s2[i2] by {
        assert(s[i + i2] == s2[i2]);
    }
    axiom_seq_len_decreases(s, s2);
}

pub broadcast proof fn axiom_seq_empty<A>()
    ensures
        #[trigger] Seq::<A>::empty().len() == 0,
{
    admit();
}

pub broadcast proof fn axiom_seq_new_len<A>(len: nat, f: spec_fn(int) -> A)
    ensures
        #[trigger] Seq::new(len, f).len() == len,
{
    admit();
}

pub broadcast proof fn axiom_seq_new_index<A>(len: nat, f: spec_fn(int) -> A, i: int)
    requires
        0 <= i < len,
    ensures
        #[trigger] Seq::new(len, f)[i] == f(i),
{
    admit();
}

pub broadcast proof fn axiom_seq_push_len<A>(s: Seq<A>, a: A)
    ensures
        #[trigger] s.push(a).len() == s.len() + 1,
{
    admit();
}

pub broadcast proof fn axiom_seq_push_index_same<A>(s: Seq<A>, a: A, i: int)
    requires
        i == s.len(),
    ensures
        #[trigger] s.push(a)[i] == a,
{
    admit();
}

pub broadcast proof fn axiom_seq_push_index_different<A>(s: Seq<A>, a: A, i: int)
    requires
        0 <= i < s.len(),
    ensures
        #[trigger] s.push(a)[i] == s[i],
{
    admit();
}

pub broadcast proof fn axiom_seq_update_len<A>(s: Seq<A>, i: int, a: A)
    requires
        0 <= i < s.len(),
    ensures
        #[trigger] s.update(i, a).len() == s.len(),
{
    admit();
}

pub broadcast proof fn axiom_seq_update_same<A>(s: Seq<A>, i: int, a: A)
    requires
        0 <= i < s.len(),
    ensures
        #[trigger] s.update(i, a)[i] == a,
{
    admit();
}

pub broadcast proof fn axiom_seq_update_different<A>(s: Seq<A>, i1: int, i2: int, a: A)
    requires
        0 <= i1 < s.len(),
        0 <= i2 < s.len(),
        i1 != i2,
    ensures
        #[trigger] s.update(i2, a)[i1] == s[i1],
{
    admit();
}

pub broadcast proof fn axiom_seq_ext_equal<A>(s1: Seq<A>, s2: Seq<A>)
    ensures
        #[trigger] (s1 =~= s2) <==> {
            &&& s1.len() == s2.len()
            &&& forall|i: int| 0 <= i < s1.len() ==> s1[i] == s2[i]
        },
{
    admit();
}

pub broadcast proof fn axiom_seq_ext_equal_deep<A>(s1: Seq<A>, s2: Seq<A>)
    ensures
        #[trigger] (s1 =~~= s2) <==> {
            &&& s1.len() == s2.len()
            &&& forall|i: int| 0 <= i < s1.len() ==> s1[i] =~~= s2[i]
        },
{
    admit();
}

pub broadcast proof fn axiom_seq_subrange_len<A>(s: Seq<A>, j: int, k: int)
    requires
        0 <= j <= k <= s.len(),
    ensures
        #[trigger] s.subrange(j, k).len() == k - j,
{
    admit();
}

pub broadcast proof fn axiom_seq_subrange_index<A>(s: Seq<A>, j: int, k: int, i: int)
    requires
        0 <= j <= k <= s.len(),
        0 <= i < k - j,
    ensures
        #[trigger] s.subrange(j, k)[i] == s[i + j],
{
    admit();
}

pub broadcast proof fn axiom_seq_add_len<A>(s1: Seq<A>, s2: Seq<A>)
    ensures
        #[trigger] s1.add(s2).len() == s1.len() + s2.len(),
{
    admit();
}

pub broadcast proof fn axiom_seq_add_index1<A>(s1: Seq<A>, s2: Seq<A>, i: int)
    requires
        0 <= i < s1.len(),
    ensures
        #[trigger] s1.add(s2)[i] == s1[i],
{
    admit();
}

pub broadcast proof fn axiom_seq_add_index2<A>(s1: Seq<A>, s2: Seq<A>, i: int)
    requires
        s1.len() <= i < s1.len() + s2.len(),
    ensures
        #[trigger] s1.add(s2)[i] == s2[i - s1.len()],
{
    admit();
}

pub broadcast group group_seq_axioms {
    axiom_seq_index_decreases,
    axiom_seq_subrange_decreases,
    axiom_seq_empty,
    axiom_seq_new_len,
    axiom_seq_new_index,
    axiom_seq_push_len,
    axiom_seq_push_index_same,
    axiom_seq_push_index_different,
    axiom_seq_update_len,
    axiom_seq_update_same,
    axiom_seq_update_different,
    axiom_seq_ext_equal,
    axiom_seq_ext_equal_deep,
    axiom_seq_subrange_len,
    axiom_seq_subrange_index,
    axiom_seq_add_len,
    axiom_seq_add_index1,
    axiom_seq_add_index2,
}

// ------------- Macros ---------------- //
#[doc(hidden)]
#[macro_export]
macro_rules! seq_internal {
    [] => {
        $crate::vstd::seq::Seq::empty()
    };
    [$elem:expr] => {
        $crate::vstd::seq::Seq::empty()
            .push($elem)
    };
    [$($elem:expr),* $(,)?] => {
        <_ as $crate::vstd::view::View>::view(&[$($elem),*])
    };
    [$elem:expr; $n:expr] => {
        $crate::vstd::seq::Seq::new(
            $n,
            $crate::vstd::prelude::closure_to_fn_spec(
                |_x: _| $elem
            ),
        )
    };
}

/// Creates a [`Seq`] containing the given elements.
///
/// ## Example
///
/// ```rust
/// let s = seq![11int, 12, 13];
///
/// assert(s.len() == 3);
/// assert(s[0] == 11);
/// assert(s[1] == 12);
/// assert(s[2] == 13);
/// ```
#[macro_export]
macro_rules! seq {
    [$($tail:tt)*] => {
        ::builtin_macros::verus_proof_macro_exprs!($crate::vstd::seq::seq_internal!($($tail)*))
    };
}

#[doc(hidden)]
pub use seq_internal;
pub use seq;

} // verus!