1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
use super::layout::*;
use super::prelude::*;
use super::raw_ptr;
use super::raw_ptr::*;
use core::marker::PhantomData;

verus! {

/// `PPtr` (which stands for "permissioned pointer")
/// is a wrapper around a raw pointer to a heap-allocated `V`.
/// This is designed to be simpler to use that Verus's
/// [more general pointer support](`crate::raw_ptr`),
/// but also to serve as a better introductory point.
/// Historically, `PPtr` was positioned as a "trusted primitive" of Verus,
/// but now, it is implemented and verified from the more general pointer support,
/// which operates on similar principles, but which is much precise to Rust's
/// pointer semantics.
///
/// A `PPtr` is equvialent to its `usize`-based address. The type paramter `V` technically
/// doesn't matter, and you can freely convert between `PPtr<V>` and `PPtr<W>` by casting
/// to and from the `usize` address. What _really_ matters is the type paramter of the
/// `PointsTo<V>`.
///
/// In order to access (read or write) the value behind the pointer, the user needs
/// a special _ghost permission token_, [`PointsTo<V>`](PointsTo). This object is `tracked`,
/// which means that it is "only a proof construct" that does not appear in compiled code,
/// but its uses _are_ checked by the borrow-checker. This ensures memory safety,
/// data-race-freedom, prohibits use-after-free, etc.
///
/// ### PointsTo objects.
///
/// The [`PointsTo`] object represents both the ability to access (read or write)
/// the data behind the pointer _and_ the ability to free it
/// (return it to the memory allocator).
///
/// The `perm: PointsTo<V>` object tracks two pieces of data:
///  * [`perm.pptr()`](PointsTo::pptr) is the pointer that the permission is associated to.
///  * [`perm.mem_contents()`](PointsTo::mem_contents) is the memory contents, which is one of either:
///     * [`MemContents::Uninit`](raw_ptr::MemContents::Uninit) if the memory pointed-to by
///       by the pointer is uninitialized.
///     * [`MemContents::Init(v)`](raw_ptr::MemContents::Init) if the memory points-to the
///       the value `v`.
///
/// Your access to the `PointsTo` object determines what operations you can safely perform
/// with the pointer:
///  * You can _read_ from the pointer as long as you have read access to the `PointsTo` object,
///     e.g., `&PointsTo<V>`.
///  * You can _write_ to the pointer as long as you have mutable access to the `PointsTo` object,
///     e.g., `&mut PointsTo<V>`
///  * You can call `free` to deallocate the memory as long as you have full onwership
///     of the `PointsTo` object (i.e., the ability to move it).
///
/// For those familiar with separation logic, the `PointsTo` object plays a role
/// similar to that of the "points-to" operator, _ptr_ ↦ _value_.
///
/// ### Example
///
/// ```rust,ignored
/// fn main() {
///     unsafe {
///         // ALLOCATE
///         // p: PPtr<u64>, points_to: PointsTo<u64>
///         let (p, Tracked(mut points_to)) = PPtr::<u64>::empty();
///
///         assert(points_to.mem_contents() === MemContents::Uninit);
///         assert(points_to.pptr() == p);
///
///         // unsafe { *p = 5; }
///         p.write(Tracked(&mut points_to), 5);
///
///         assert(points_to.mem_contents() === MemContents::Init(5));
///         assert(points_to.pptr() == p);
///
///         // let x = unsafe { *p };
///         let x = p.read(Tracked(&points_to));
///
///         assert(x == 5);
///
///         // DEALLOCATE
///         let y = p.into_inner(Tracked(points_to));
///
///         assert(y == 5);
///     }
/// }
/// ```
///
/// ### Examples of incorrect usage
///
/// The following code has a use-after-free bug, and it is rejected by Verus because
/// it fails to satisfy Rust's ownership-checker.
///
/// ```rust,ignored
/// fn main() {
///     unsafe {
///         // ALLOCATE
///         // p: PPtr<u64>, points_to: PointsTo<u64>
///         let (p, Tracked(mut points_to)) = PPtr::<u64>::empty();
///
///         // unsafe { *p = 5; }
///         p.write(Tracked(&mut points_to), 5);
///
///         // let x = unsafe { *p };
///         let x = p.read(Tracked(&points_to));
///
///         // DEALLOCATE
///         p.free(Tracked(points_to));                 // `points_to` is moved here
///
///         // READ-AFTER-FREE
///         let x2 = p.read(Tracked(&mut points_to));   // so it can't be used here
///     }
/// }
/// ```
///
/// The following doesn't violate Rust's ownership-checking, but it "mixes up" the `PointsTo`
/// objects, attempting to use the wrong `PointsTo` for the given pointer.
/// This violates the precondition on [`p.read()`](PPtr::read).
///
/// ```rust,ignored
/// fn main() {
///     unsafe {
///         // ALLOCATE p
///         let (p, Tracked(mut perm_p)) = PPtr::<u64>::empty();
///
///         // ALLOCATE q
///         let (q, Tracked(mut perm_q)) = PPtr::<u64>::empty();
///
///         // DEALLOCATE p
///         p.free(Tracked(perm_p));
///
///         // READ-AFTER-FREE (read from p, try to use q's permission object)
///         let x = p.read(Tracked(&mut perm_q));
///     }
/// }
/// ```
///
/// ### Differences from `PCell`.
///
/// `PPtr` is similar to [`cell::PCell`](crate::cell::PCell), but has a few key differences:
///  * In `PCell<V>`, the type `V` is placed internally to the `PCell`, whereas with `PPtr`,
///    the type `V` is placed at some location on the heap.
///  * Since `PPtr` is just a pointer (represented by an integer), it can be `Copy`.
///  * The `ptr::PointsTo` token represents not just the permission to read/write
///    the contents, but also to deallocate.
///
/// ### Simplifications relative to more general pointer API
///
///  * Pointers are only represented by addresses and don't have a general notion of provenance
///  * Pointers are untyped (only `PointsTo` is typed).
///  * The `PointsTo` also encapsulates the permission to free a pointer.
///  * `PointsTo` tokens are non-fungible. They can't be broken up or made variable-sized.
// We want PPtr's fields to be public so the solver knows that equality of addresses
// implies equality of PPtrs
pub struct PPtr<V>(pub usize, pub PhantomData<V>);

/// A `tracked` ghost object that gives the user permission to dereference a pointer
/// for reading or writing, or to free the memory at that pointer.
///
/// The meaning of a `PointsTo` object is given by the data in its
/// `View` object, [`PointsToData`].
///
/// See the [`PPtr`] documentation for more details.
pub tracked struct PointsTo<V> {
    points_to: raw_ptr::PointsTo<V>,
    exposed: raw_ptr::IsExposed,
    dealloc: Option<raw_ptr::Dealloc>,
}

#[verusfmt::skip]
broadcast use
    super::raw_ptr::group_raw_ptr_axioms,
    super::set_lib::group_set_lib_axioms,
    super::set::group_set_axioms;

impl<V> PPtr<V> {
    /// Use `addr()` instead
    #[verifier::inline]
    pub open spec fn spec_addr(p: PPtr<V>) -> usize {
        p.0
    }

    /// Cast a pointer to an integer.
    #[inline(always)]
    #[verifier::when_used_as_spec(spec_addr)]
    pub fn addr(self) -> (u: usize)
        ensures
            u == self.addr(),
    {
        self.0
    }

    /// Cast an integer to a pointer.
    ///
    /// Note that this does _not_ require or ensure that the pointer is valid.
    /// Of course, if the user creates an invalid pointer, they would still not be able to
    /// create a valid [`PointsTo`] token for it, and thus they would never
    /// be able to access the data behind the pointer.
    ///
    /// This is analogous to normal Rust, where casting to a pointer is always possible,
    /// but dereferencing a pointer is an `unsafe` operation.
    /// With PPtr, casting to a pointer is likewise always possible,
    /// while dereferencing it is only allowed when the right preconditions are met.
    #[inline(always)]
    pub fn from_addr(u: usize) -> (s: Self)
        ensures
            u == s.addr(),
    {
        PPtr(u, PhantomData)
    }

    #[doc(hidden)]
    #[inline(always)]
    pub fn from_usize(u: usize) -> (s: Self)
        ensures
            u == s.addr(),
    {
        PPtr(u, PhantomData)
    }
}

impl<V> PointsTo<V> {
    #[verifier::inline]
    pub open spec fn pptr(&self) -> PPtr<V> {
        PPtr(self.addr(), PhantomData)
    }

    pub closed spec fn addr(self) -> usize {
        self.points_to.ptr().addr()
    }

    // TODO make this a user-defined type invariant
    #[verifier::type_invariant]
    closed spec fn wf(self) -> bool {
        &&& self.points_to.ptr()@.metadata == Metadata::Thin
        &&& self.points_to.ptr()@.provenance == self.exposed.provenance()
        &&& match self.dealloc {
            Some(dealloc) => {
                &&& dealloc.addr() == self.points_to.ptr().addr()
                &&& dealloc.size() == size_of::<V>()
                &&& dealloc.align() == align_of::<V>()
                &&& dealloc.provenance() == self.points_to.ptr()@.provenance
                &&& size_of::<V>() > 0
            },
            None => { size_of::<V>() == 0 },
        }
        &&& self.points_to.ptr().addr() != 0
    }

    pub closed spec fn mem_contents(&self) -> MemContents<V> {
        self.points_to.opt_value()
    }

    #[doc(hidden)]
    #[verifier::inline]
    pub open spec fn opt_value(&self) -> MemContents<V> {
        self.mem_contents()
    }

    #[verifier::inline]
    pub open spec fn is_init(&self) -> bool {
        self.mem_contents().is_init()
    }

    #[verifier::inline]
    pub open spec fn is_uninit(&self) -> bool {
        self.mem_contents().is_uninit()
    }

    #[verifier::inline]
    pub open spec fn value(&self) -> V
        recommends
            self.is_init(),
    {
        self.mem_contents().value()
    }

    /// Guarantee that the `PointsTo` points to a non-null address.
    pub proof fn is_nonnull(tracked &self)
        ensures
            self.addr() != 0,
    {
        use_type_invariant(self);
    }

    /// "Forgets" about the value stored behind the pointer.
    /// Updates the `PointsTo` value to [`MemContents::Uninit`](MemContents::Uninit).
    /// Note that this is a `proof` function, i.e., it is operationally a no-op in executable code.
    pub proof fn leak_contents(tracked &mut self)
        ensures
            self.pptr() == old(self).pptr(),
            self.is_uninit(),
    {
        use_type_invariant(&*self);
        self.points_to.leak_contents();
    }

    /// Guarantees that two distinct `PointsTo<V>` objects point to disjoint ranges of memory.
    /// If both S and V are non-zero-sized, then this also implies the pointers
    /// have distinct addresses.
    pub proof fn is_disjoint<S>(&mut self, other: &PointsTo<S>)
        ensures
            *old(self) == *self,
            self.addr() + size_of::<V>() <= other.addr() || other.addr() + size_of::<S>()
                <= self.addr(),
    {
        self.points_to.is_disjoint(&other.points_to);
    }

    /// Guarantees that two distinct, non-ZST `PointsTo<V>` objects point to different
    /// addresses. This is a corollary of [`PointsTo::is_disjoint`].
    pub proof fn is_distinct<S>(&mut self, other: &PointsTo<S>)
        requires
            size_of::<V>() != 0,
            size_of::<S>() != 0,
        ensures
            *old(self) == *self,
            self.addr() != other.addr(),
    {
        self.points_to.is_disjoint(&other.points_to);
    }
}

impl<V> Clone for PPtr<V> {
    fn clone(&self) -> (res: Self)
        ensures
            res == *self,
    {
        PPtr(self.0, PhantomData)
    }
}

impl<V> Copy for PPtr<V> {

}

impl<V> PPtr<V> {
    /// Allocates heap memory for type `V`, leaving it uninitialized.
    #[cfg(feature = "std")]
    pub fn empty() -> (pt: (PPtr<V>, Tracked<PointsTo<V>>))
        ensures
            pt.1@.pptr() == pt.0,
            pt.1@.is_uninit(),
        opens_invariants none
    {
        layout_for_type_is_valid::<V>();
        if core::mem::size_of::<V>() != 0 {
            let (p, Tracked(points_to_raw), Tracked(dealloc)) = allocate(
                core::mem::size_of::<V>(),
                core::mem::align_of::<V>(),
            );
            let Tracked(exposed) = expose_provenance(p);
            let tracked points_to = points_to_raw.into_typed::<V>(p.addr());
            proof {
                points_to.is_nonnull();
            }
            let tracked pt = PointsTo { points_to, exposed, dealloc: Some(dealloc) };
            let pptr = PPtr(p as usize, PhantomData);

            return (pptr, Tracked(pt));
        } else {
            let p = core::mem::align_of::<V>();
            assert(p % p == 0) by (nonlinear_arith)
                requires
                    p != 0,
            ;
            let tracked emp = PointsToRaw::empty(Provenance::null());
            let tracked points_to = emp.into_typed(p);
            let tracked pt = PointsTo { points_to, exposed: IsExposed::null(), dealloc: None };
            let pptr = PPtr(p, PhantomData);

            return (pptr, Tracked(pt));
        }
    }

    /// Allocates heap memory for type `V`, leaving it initialized
    /// with the given value `v`.
    #[cfg(feature = "std")]
    pub fn new(v: V) -> (pt: (PPtr<V>, Tracked<PointsTo<V>>))
        ensures
            pt.1@.pptr() == pt.0,
            pt.1@.mem_contents() == MemContents::Init(v),
        opens_invariants none
    {
        let (p, Tracked(mut pt)) = PPtr::<V>::empty();
        p.put(Tracked(&mut pt), v);
        (p, Tracked(pt))
    }

    /// Free the memory pointed to be `perm`.
    /// Requires the memory to be uninitialized.
    ///
    /// This consumes `perm`, since it will no longer be safe to access
    /// that memory location.
    #[verifier::external_body]
    pub fn free(self, Tracked(perm): Tracked<PointsTo<V>>)
        requires
            perm.pptr() == self,
            perm.is_uninit(),
        opens_invariants none
    {
        if core::mem::size_of::<V>() != 0 {
            let ptr: *mut u8 = with_exposed_provenance(self.0, Tracked(perm.exposed));
            let tracked PointsTo { points_to, dealloc: dea, exposed } = perm;
            let tracked points_to_raw = points_to.into_raw();
            deallocate(
                ptr,
                core::mem::size_of::<V>(),
                core::mem::align_of::<V>(),
                Tracked(points_to_raw),
                Tracked(dea.tracked_unwrap()),
            );
        }
    }

    /// Free the memory pointed to be `perm` and return the
    /// value that was previously there.
    /// Requires the memory to be initialized.
    /// This consumes the [`PointsTo`] token, since the user is giving up
    /// access to the memory by freeing it.
    #[inline(always)]
    pub fn into_inner(self, Tracked(perm): Tracked<PointsTo<V>>) -> (v: V)
        requires
            perm.pptr() == self,
            perm.is_init(),
        ensures
            v == perm.value(),
        opens_invariants none
    {
        let tracked mut perm = perm;
        let v = self.take(Tracked(&mut perm));
        self.free(Tracked(perm));
        v
    }

    /// Moves `v` into the location pointed to by the pointer `self`.
    /// Requires the memory to be uninitialized, and leaves it initialized.
    ///
    /// In the ghost perspective, this updates `perm.mem_contents()`
    /// from `MemContents::Uninit` to `MemContents::Init(v)`.
    #[inline(always)]
    pub fn put(self, Tracked(perm): Tracked<&mut PointsTo<V>>, v: V)
        requires
            old(perm).pptr() == self,
            old(perm).mem_contents() == MemContents::Uninit::<V>,
        ensures
            perm.pptr() == old(perm).pptr(),
            perm.mem_contents() == MemContents::Init(v),
        opens_invariants none
        no_unwind
    {
        proof {
            use_type_invariant(&*perm);
        }
        let ptr: *mut V = with_exposed_provenance(self.0, Tracked(perm.exposed));
        ptr_mut_write(ptr, Tracked(&mut perm.points_to), v);
    }

    /// Moves `v` out of the location pointed to by the pointer `self`
    /// and returns it.
    /// Requires the memory to be initialized, and leaves it uninitialized.
    ///
    /// In the ghost perspective, this updates `perm.value`
    /// from `Some(v)` to `None`,
    /// while returning the `v` as an `exec` value.
    #[inline(always)]
    pub fn take(self, Tracked(perm): Tracked<&mut PointsTo<V>>) -> (v: V)
        requires
            old(perm).pptr() == self,
            old(perm).is_init(),
        ensures
            perm.pptr() == old(perm).pptr(),
            perm.mem_contents() == MemContents::Uninit::<V>,
            v == old(perm).value(),
        opens_invariants none
        no_unwind
    {
        proof {
            use_type_invariant(&*perm);
        }
        let ptr: *mut V = with_exposed_provenance(self.0, Tracked(perm.exposed));
        ptr_mut_read(ptr, Tracked(&mut perm.points_to))
    }

    /// Swaps the `in_v: V` passed in as an argument with the value in memory.
    /// Requires the memory to be initialized, and leaves it initialized with the new value.
    #[inline(always)]
    pub fn replace(self, Tracked(perm): Tracked<&mut PointsTo<V>>, in_v: V) -> (out_v: V)
        requires
            old(perm).pptr() == self,
            old(perm).is_init(),
        ensures
            perm.pptr() == old(perm).pptr(),
            perm.mem_contents() == MemContents::Init(in_v),
            out_v == old(perm).value(),
        opens_invariants none
        no_unwind
    {
        proof {
            use_type_invariant(&*perm);
        }
        let ptr: *mut V = with_exposed_provenance(self.0, Tracked(perm.exposed));
        let out_v = ptr_mut_read(ptr, Tracked(&mut perm.points_to));
        ptr_mut_write(ptr, Tracked(&mut perm.points_to), in_v);
        out_v
    }

    /// Given a shared borrow of the `PointsTo<V>`, obtain a shared borrow of `V`.
    #[inline(always)]
    #[verifier::external_body]
    pub fn borrow<'a>(self, Tracked(perm): Tracked<&'a PointsTo<V>>) -> (v: &'a V)
        requires
            perm.pptr() == self,
            perm.is_init(),
        ensures
            *v === perm.value(),
        opens_invariants none
        no_unwind
    {
        proof {
            use_type_invariant(&*perm);
        }
        let ptr: *mut V = with_exposed_provenance(self.0, Tracked(perm.exposed));
        ptr_ref(ptr, Tracked(&perm.points_to))
    }

    #[inline(always)]
    pub fn write(self, Tracked(perm): Tracked<&mut PointsTo<V>>, in_v: V) where V: Copy
        requires
            old(perm).pptr() == self,
        ensures
            perm.pptr() === old(perm).pptr(),
            perm.mem_contents() === MemContents::Init(in_v),
        opens_invariants none
        no_unwind
    {
        proof {
            use_type_invariant(&*perm);
            perm.leak_contents();
        }
        self.put(Tracked(&mut *perm), in_v);
    }

    #[inline(always)]
    pub fn read(self, Tracked(perm): Tracked<&PointsTo<V>>) -> (out_v: V) where V: Copy
        requires
            perm.pptr() == self,
            perm.is_init(),
        ensures
            out_v == perm.value(),
        opens_invariants none
        no_unwind
    {
        *self.borrow(Tracked(&*perm))
    }
}

pub use raw_ptr::MemContents;

} // verus!