1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
use super::layout::*;
use super::prelude::*;
use super::raw_ptr;
use super::raw_ptr::*;
use core::marker::PhantomData;
verus! {
/// `PPtr` (which stands for "permissioned pointer")
/// is a wrapper around a raw pointer to a heap-allocated `V`.
/// This is designed to be simpler to use that Verus's
/// [more general pointer support](`crate::raw_ptr`),
/// but also to serve as a better introductory point.
/// Historically, `PPtr` was positioned as a "trusted primitive" of Verus,
/// but now, it is implemented and verified from the more general pointer support,
/// which operates on similar principles, but which is much precise to Rust's
/// pointer semantics.
///
/// A `PPtr` is equvialent to its `usize`-based address. The type paramter `V` technically
/// doesn't matter, and you can freely convert between `PPtr<V>` and `PPtr<W>` by casting
/// to and from the `usize` address. What _really_ matters is the type paramter of the
/// `PointsTo<V>`.
///
/// In order to access (read or write) the value behind the pointer, the user needs
/// a special _ghost permission token_, [`PointsTo<V>`](PointsTo). This object is `tracked`,
/// which means that it is "only a proof construct" that does not appear in compiled code,
/// but its uses _are_ checked by the borrow-checker. This ensures memory safety,
/// data-race-freedom, prohibits use-after-free, etc.
///
/// ### PointsTo objects.
///
/// The [`PointsTo`] object represents both the ability to access (read or write)
/// the data behind the pointer _and_ the ability to free it
/// (return it to the memory allocator).
///
/// The `perm: PointsTo<V>` object tracks two pieces of data:
/// * [`perm.pptr()`](PointsTo::pptr) is the pointer that the permission is associated to.
/// * [`perm.mem_contents()`](PointsTo::mem_contents) is the memory contents, which is one of either:
/// * [`MemContents::Uninit`](raw_ptr::MemContents::Uninit) if the memory pointed-to by
/// by the pointer is uninitialized.
/// * [`MemContents::Init(v)`](raw_ptr::MemContents::Init) if the memory points-to the
/// the value `v`.
///
/// Your access to the `PointsTo` object determines what operations you can safely perform
/// with the pointer:
/// * You can _read_ from the pointer as long as you have read access to the `PointsTo` object,
/// e.g., `&PointsTo<V>`.
/// * You can _write_ to the pointer as long as you have mutable access to the `PointsTo` object,
/// e.g., `&mut PointsTo<V>`
/// * You can call `free` to deallocate the memory as long as you have full onwership
/// of the `PointsTo` object (i.e., the ability to move it).
///
/// For those familiar with separation logic, the `PointsTo` object plays a role
/// similar to that of the "points-to" operator, _ptr_ ↦ _value_.
///
/// ### Example
///
/// ```rust,ignored
/// fn main() {
/// unsafe {
/// // ALLOCATE
/// // p: PPtr<u64>, points_to: PointsTo<u64>
/// let (p, Tracked(mut points_to)) = PPtr::<u64>::empty();
///
/// assert(points_to.mem_contents() === MemContents::Uninit);
/// assert(points_to.pptr() == p);
///
/// // unsafe { *p = 5; }
/// p.write(Tracked(&mut points_to), 5);
///
/// assert(points_to.mem_contents() === MemContents::Init(5));
/// assert(points_to.pptr() == p);
///
/// // let x = unsafe { *p };
/// let x = p.read(Tracked(&points_to));
///
/// assert(x == 5);
///
/// // DEALLOCATE
/// let y = p.into_inner(Tracked(points_to));
///
/// assert(y == 5);
/// }
/// }
/// ```
///
/// ### Examples of incorrect usage
///
/// The following code has a use-after-free bug, and it is rejected by Verus because
/// it fails to satisfy Rust's ownership-checker.
///
/// ```rust,ignored
/// fn main() {
/// unsafe {
/// // ALLOCATE
/// // p: PPtr<u64>, points_to: PointsTo<u64>
/// let (p, Tracked(mut points_to)) = PPtr::<u64>::empty();
///
/// // unsafe { *p = 5; }
/// p.write(Tracked(&mut points_to), 5);
///
/// // let x = unsafe { *p };
/// let x = p.read(Tracked(&points_to));
///
/// // DEALLOCATE
/// p.free(Tracked(points_to)); // `points_to` is moved here
///
/// // READ-AFTER-FREE
/// let x2 = p.read(Tracked(&mut points_to)); // so it can't be used here
/// }
/// }
/// ```
///
/// The following doesn't violate Rust's ownership-checking, but it "mixes up" the `PointsTo`
/// objects, attempting to use the wrong `PointsTo` for the given pointer.
/// This violates the precondition on [`p.read()`](PPtr::read).
///
/// ```rust,ignored
/// fn main() {
/// unsafe {
/// // ALLOCATE p
/// let (p, Tracked(mut perm_p)) = PPtr::<u64>::empty();
///
/// // ALLOCATE q
/// let (q, Tracked(mut perm_q)) = PPtr::<u64>::empty();
///
/// // DEALLOCATE p
/// p.free(Tracked(perm_p));
///
/// // READ-AFTER-FREE (read from p, try to use q's permission object)
/// let x = p.read(Tracked(&mut perm_q));
/// }
/// }
/// ```
///
/// ### Differences from `PCell`.
///
/// `PPtr` is similar to [`cell::PCell`](crate::cell::PCell), but has a few key differences:
/// * In `PCell<V>`, the type `V` is placed internally to the `PCell`, whereas with `PPtr`,
/// the type `V` is placed at some location on the heap.
/// * Since `PPtr` is just a pointer (represented by an integer), it can be `Copy`.
/// * The `ptr::PointsTo` token represents not just the permission to read/write
/// the contents, but also to deallocate.
///
/// ### Simplifications relative to more general pointer API
///
/// * Pointers are only represented by addresses and don't have a general notion of provenance
/// * Pointers are untyped (only `PointsTo` is typed).
/// * The `PointsTo` also encapsulates the permission to free a pointer.
/// * `PointsTo` tokens are non-fungible. They can't be broken up or made variable-sized.
// We want PPtr's fields to be public so the solver knows that equality of addresses
// implies equality of PPtrs
pub struct PPtr<V>(pub usize, pub PhantomData<V>);
/// A `tracked` ghost object that gives the user permission to dereference a pointer
/// for reading or writing, or to free the memory at that pointer.
///
/// The meaning of a `PointsTo` object is given by the data in its
/// `View` object, [`PointsToData`].
///
/// See the [`PPtr`] documentation for more details.
pub tracked struct PointsTo<V> {
points_to: raw_ptr::PointsTo<V>,
exposed: raw_ptr::IsExposed,
dealloc: Option<raw_ptr::Dealloc>,
}
#[verusfmt::skip]
broadcast use
super::raw_ptr::group_raw_ptr_axioms,
super::set_lib::group_set_lib_axioms,
super::set::group_set_axioms;
impl<V> PPtr<V> {
/// Use `addr()` instead
#[verifier::inline]
pub open spec fn spec_addr(p: PPtr<V>) -> usize {
p.0
}
/// Cast a pointer to an integer.
#[inline(always)]
#[verifier::when_used_as_spec(spec_addr)]
pub fn addr(self) -> (u: usize)
ensures
u == self.addr(),
{
self.0
}
/// Cast an integer to a pointer.
///
/// Note that this does _not_ require or ensure that the pointer is valid.
/// Of course, if the user creates an invalid pointer, they would still not be able to
/// create a valid [`PointsTo`] token for it, and thus they would never
/// be able to access the data behind the pointer.
///
/// This is analogous to normal Rust, where casting to a pointer is always possible,
/// but dereferencing a pointer is an `unsafe` operation.
/// With PPtr, casting to a pointer is likewise always possible,
/// while dereferencing it is only allowed when the right preconditions are met.
#[inline(always)]
pub fn from_addr(u: usize) -> (s: Self)
ensures
u == s.addr(),
{
PPtr(u, PhantomData)
}
#[doc(hidden)]
#[inline(always)]
pub fn from_usize(u: usize) -> (s: Self)
ensures
u == s.addr(),
{
PPtr(u, PhantomData)
}
}
impl<V> PointsTo<V> {
#[verifier::inline]
pub open spec fn pptr(&self) -> PPtr<V> {
PPtr(self.addr(), PhantomData)
}
pub closed spec fn addr(self) -> usize {
self.points_to.ptr().addr()
}
// TODO make this a user-defined type invariant
#[verifier::type_invariant]
closed spec fn wf(self) -> bool {
&&& self.points_to.ptr()@.metadata == Metadata::Thin
&&& self.points_to.ptr()@.provenance == self.exposed.provenance()
&&& match self.dealloc {
Some(dealloc) => {
&&& dealloc.addr() == self.points_to.ptr().addr()
&&& dealloc.size() == size_of::<V>()
&&& dealloc.align() == align_of::<V>()
&&& dealloc.provenance() == self.points_to.ptr()@.provenance
&&& size_of::<V>() > 0
},
None => { size_of::<V>() == 0 },
}
&&& self.points_to.ptr().addr() != 0
}
pub closed spec fn mem_contents(&self) -> MemContents<V> {
self.points_to.opt_value()
}
#[doc(hidden)]
#[verifier::inline]
pub open spec fn opt_value(&self) -> MemContents<V> {
self.mem_contents()
}
#[verifier::inline]
pub open spec fn is_init(&self) -> bool {
self.mem_contents().is_init()
}
#[verifier::inline]
pub open spec fn is_uninit(&self) -> bool {
self.mem_contents().is_uninit()
}
#[verifier::inline]
pub open spec fn value(&self) -> V
recommends
self.is_init(),
{
self.mem_contents().value()
}
/// Guarantee that the `PointsTo` points to a non-null address.
pub proof fn is_nonnull(tracked &self)
ensures
self.addr() != 0,
{
use_type_invariant(self);
}
/// "Forgets" about the value stored behind the pointer.
/// Updates the `PointsTo` value to [`MemContents::Uninit`](MemContents::Uninit).
/// Note that this is a `proof` function, i.e., it is operationally a no-op in executable code.
pub proof fn leak_contents(tracked &mut self)
ensures
self.pptr() == old(self).pptr(),
self.is_uninit(),
{
use_type_invariant(&*self);
self.points_to.leak_contents();
}
/// Guarantees that two distinct `PointsTo<V>` objects point to disjoint ranges of memory.
/// If both S and V are non-zero-sized, then this also implies the pointers
/// have distinct addresses.
pub proof fn is_disjoint<S>(&mut self, other: &PointsTo<S>)
ensures
*old(self) == *self,
self.addr() + size_of::<V>() <= other.addr() || other.addr() + size_of::<S>()
<= self.addr(),
{
self.points_to.is_disjoint(&other.points_to);
}
/// Guarantees that two distinct, non-ZST `PointsTo<V>` objects point to different
/// addresses. This is a corollary of [`PointsTo::is_disjoint`].
pub proof fn is_distinct<S>(&mut self, other: &PointsTo<S>)
requires
size_of::<V>() != 0,
size_of::<S>() != 0,
ensures
*old(self) == *self,
self.addr() != other.addr(),
{
self.points_to.is_disjoint(&other.points_to);
}
}
impl<V> Clone for PPtr<V> {
fn clone(&self) -> (res: Self)
ensures
res == *self,
{
PPtr(self.0, PhantomData)
}
}
impl<V> Copy for PPtr<V> {
}
impl<V> PPtr<V> {
/// Allocates heap memory for type `V`, leaving it uninitialized.
#[cfg(feature = "std")]
pub fn empty() -> (pt: (PPtr<V>, Tracked<PointsTo<V>>))
ensures
pt.1@.pptr() == pt.0,
pt.1@.is_uninit(),
opens_invariants none
{
layout_for_type_is_valid::<V>();
if core::mem::size_of::<V>() != 0 {
let (p, Tracked(points_to_raw), Tracked(dealloc)) = allocate(
core::mem::size_of::<V>(),
core::mem::align_of::<V>(),
);
let Tracked(exposed) = expose_provenance(p);
let tracked points_to = points_to_raw.into_typed::<V>(p.addr());
proof {
points_to.is_nonnull();
}
let tracked pt = PointsTo { points_to, exposed, dealloc: Some(dealloc) };
let pptr = PPtr(p as usize, PhantomData);
return (pptr, Tracked(pt));
} else {
let p = core::mem::align_of::<V>();
assert(p % p == 0) by (nonlinear_arith)
requires
p != 0,
;
let tracked emp = PointsToRaw::empty(Provenance::null());
let tracked points_to = emp.into_typed(p);
let tracked pt = PointsTo { points_to, exposed: IsExposed::null(), dealloc: None };
let pptr = PPtr(p, PhantomData);
return (pptr, Tracked(pt));
}
}
/// Allocates heap memory for type `V`, leaving it initialized
/// with the given value `v`.
#[cfg(feature = "std")]
pub fn new(v: V) -> (pt: (PPtr<V>, Tracked<PointsTo<V>>))
ensures
pt.1@.pptr() == pt.0,
pt.1@.mem_contents() == MemContents::Init(v),
opens_invariants none
{
let (p, Tracked(mut pt)) = PPtr::<V>::empty();
p.put(Tracked(&mut pt), v);
(p, Tracked(pt))
}
/// Free the memory pointed to be `perm`.
/// Requires the memory to be uninitialized.
///
/// This consumes `perm`, since it will no longer be safe to access
/// that memory location.
#[verifier::external_body]
pub fn free(self, Tracked(perm): Tracked<PointsTo<V>>)
requires
perm.pptr() == self,
perm.is_uninit(),
opens_invariants none
{
if core::mem::size_of::<V>() != 0 {
let ptr: *mut u8 = with_exposed_provenance(self.0, Tracked(perm.exposed));
let tracked PointsTo { points_to, dealloc: dea, exposed } = perm;
let tracked points_to_raw = points_to.into_raw();
deallocate(
ptr,
core::mem::size_of::<V>(),
core::mem::align_of::<V>(),
Tracked(points_to_raw),
Tracked(dea.tracked_unwrap()),
);
}
}
/// Free the memory pointed to be `perm` and return the
/// value that was previously there.
/// Requires the memory to be initialized.
/// This consumes the [`PointsTo`] token, since the user is giving up
/// access to the memory by freeing it.
#[inline(always)]
pub fn into_inner(self, Tracked(perm): Tracked<PointsTo<V>>) -> (v: V)
requires
perm.pptr() == self,
perm.is_init(),
ensures
v == perm.value(),
opens_invariants none
{
let tracked mut perm = perm;
let v = self.take(Tracked(&mut perm));
self.free(Tracked(perm));
v
}
/// Moves `v` into the location pointed to by the pointer `self`.
/// Requires the memory to be uninitialized, and leaves it initialized.
///
/// In the ghost perspective, this updates `perm.mem_contents()`
/// from `MemContents::Uninit` to `MemContents::Init(v)`.
#[inline(always)]
pub fn put(self, Tracked(perm): Tracked<&mut PointsTo<V>>, v: V)
requires
old(perm).pptr() == self,
old(perm).mem_contents() == MemContents::Uninit::<V>,
ensures
perm.pptr() == old(perm).pptr(),
perm.mem_contents() == MemContents::Init(v),
opens_invariants none
no_unwind
{
proof {
use_type_invariant(&*perm);
}
let ptr: *mut V = with_exposed_provenance(self.0, Tracked(perm.exposed));
ptr_mut_write(ptr, Tracked(&mut perm.points_to), v);
}
/// Moves `v` out of the location pointed to by the pointer `self`
/// and returns it.
/// Requires the memory to be initialized, and leaves it uninitialized.
///
/// In the ghost perspective, this updates `perm.value`
/// from `Some(v)` to `None`,
/// while returning the `v` as an `exec` value.
#[inline(always)]
pub fn take(self, Tracked(perm): Tracked<&mut PointsTo<V>>) -> (v: V)
requires
old(perm).pptr() == self,
old(perm).is_init(),
ensures
perm.pptr() == old(perm).pptr(),
perm.mem_contents() == MemContents::Uninit::<V>,
v == old(perm).value(),
opens_invariants none
no_unwind
{
proof {
use_type_invariant(&*perm);
}
let ptr: *mut V = with_exposed_provenance(self.0, Tracked(perm.exposed));
ptr_mut_read(ptr, Tracked(&mut perm.points_to))
}
/// Swaps the `in_v: V` passed in as an argument with the value in memory.
/// Requires the memory to be initialized, and leaves it initialized with the new value.
#[inline(always)]
pub fn replace(self, Tracked(perm): Tracked<&mut PointsTo<V>>, in_v: V) -> (out_v: V)
requires
old(perm).pptr() == self,
old(perm).is_init(),
ensures
perm.pptr() == old(perm).pptr(),
perm.mem_contents() == MemContents::Init(in_v),
out_v == old(perm).value(),
opens_invariants none
no_unwind
{
proof {
use_type_invariant(&*perm);
}
let ptr: *mut V = with_exposed_provenance(self.0, Tracked(perm.exposed));
let out_v = ptr_mut_read(ptr, Tracked(&mut perm.points_to));
ptr_mut_write(ptr, Tracked(&mut perm.points_to), in_v);
out_v
}
/// Given a shared borrow of the `PointsTo<V>`, obtain a shared borrow of `V`.
#[inline(always)]
#[verifier::external_body]
pub fn borrow<'a>(self, Tracked(perm): Tracked<&'a PointsTo<V>>) -> (v: &'a V)
requires
perm.pptr() == self,
perm.is_init(),
ensures
*v === perm.value(),
opens_invariants none
no_unwind
{
proof {
use_type_invariant(&*perm);
}
let ptr: *mut V = with_exposed_provenance(self.0, Tracked(perm.exposed));
ptr_ref(ptr, Tracked(&perm.points_to))
}
#[inline(always)]
pub fn write(self, Tracked(perm): Tracked<&mut PointsTo<V>>, in_v: V) where V: Copy
requires
old(perm).pptr() == self,
ensures
perm.pptr() === old(perm).pptr(),
perm.mem_contents() === MemContents::Init(in_v),
opens_invariants none
no_unwind
{
proof {
use_type_invariant(&*perm);
perm.leak_contents();
}
self.put(Tracked(&mut *perm), in_v);
}
#[inline(always)]
pub fn read(self, Tracked(perm): Tracked<&PointsTo<V>>) -> (out_v: V) where V: Copy
requires
perm.pptr() == self,
perm.is_init(),
ensures
out_v == perm.value(),
opens_invariants none
no_unwind
{
*self.borrow(Tracked(&*perm))
}
}
pub use raw_ptr::MemContents;
} // verus!