Module set
vstd
Module set
Re-exports
Modules
Macros
Structs
Functions
In crate vstd
Modules
arithmetic
array
atomic
atomic_ghost
bits
bytes
calc_macro
cell
compute
hash_map
hash_set
invariant
layout
map
map_lib
math
modes
multiset
multiset_lib
pcm
pcm_lib
pervasive
prelude
proph
raw_ptr
relations
rwlock
seq
seq_lib
set
set_lib
shared
simple_pptr
slice
std_specs
storage_protocol
string
thread
tokens
view
Macros
assert_by_contradiction
assert_maps_equal
assert_multisets_equal
assert_multisets_equal_internal
assert_seqs_equal
assert_sets_equal
atomic_with_ghost
calc
map
open_atomic_invariant
open_atomic_invariant_in_proof
open_atomic_invariant_in_proof_internal
open_atomic_invariant_internal
open_local_invariant
open_local_invariant_in_proof
open_local_invariant_in_proof_internal
open_local_invariant_internal
pcell_opt
pcell_points
seq
set
vpanic
Functions
group_vstd_default
?
Settings
Module
vstd
::
set
Copy item path
source
·
[
−
]
Re-exports
§
pub use set_internal;
Modules
§
fold
This module defines a fold function for finite sets and proves a number of associated lemmas.
Macros
§
set
Structs
§
Set
Set<A>
is a set type for specifications.
Functions
§
axiom_
mk_
map_
domain
axiom_
mk_
map_
index
axiom_
set_
choose_
finite
axiom_
set_
choose_
len
axiom_
set_
complement
axiom_
set_
contains_
len
axiom_
set_
difference
axiom_
set_
difference_
finite
axiom_
set_
empty
axiom_
set_
empty_
finite
axiom_
set_
empty_
len
axiom_
set_
ext_
equal
axiom_
set_
ext_
equal_
deep
axiom_
set_
insert_
different
axiom_
set_
insert_
finite
axiom_
set_
insert_
len
axiom_
set_
insert_
same
axiom_
set_
intersect
axiom_
set_
intersect_
finite
axiom_
set_
new
axiom_
set_
remove_
different
axiom_
set_
remove_
finite
axiom_
set_
remove_
insert
axiom_
set_
remove_
len
axiom_
set_
remove_
same
axiom_
set_
union
axiom_
set_
union_
finite
group_
set_
axioms