1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
//! This file contains proofs related to integer multiplication (`*`).
//! These are part of the math standard library.
//!
//! It's based on the following file from the Dafny math standard
//! library:
//! `Source/DafnyStandardLibraries/src/Std/Arithmetic/Mul.dfy`.
//! That file has the following copyright notice:
//! /*******************************************************************************
//! * Original: Copyright (c) Microsoft Corporation *
//! SPDX-License-Identifier: MIT * * Modifications and Extensions:
//! Copyright by the contributors to the Dafny Project *
//! SPDX-License-Identifier: MIT
//! *******************************************************************************/
#[allow(unused_imports)]
use super::super::prelude::*;

verus! {

use super::super::arithmetic::internals::mul_internals_nonlinear as MulINL;
use super::super::arithmetic::internals::mul_internals::*;

/// Proof that multiplication using `*` is equivalent to
/// multiplication using a recursive definition. Specifically,
/// `x * y` is equivalent in that way.
pub broadcast proof fn lemma_mul_is_mul_recursive(x: int, y: int)
    ensures
        #[trigger] (x * y) == mul_recursive(x, y),
{
    if (x >= 0) {
        lemma_mul_is_mul_pos(x, y);
        assert(x * y == mul_pos(x, y));
        assert((x * y) == mul_recursive(x, y));
    } else {
        lemma_mul_is_mul_pos(-x, y);
        assert(x * y == -1 * (-x * y)) by { lemma_mul_is_associative(-1, -x, y) };  // OBSERVE
        assert((x * y) == mul_recursive(x, y));
    }
}

/// Proof that multiplying two positive integers with `*` results in
/// the same product as would be achieved by recursive addition.
/// Specifically, `x * y == mul_pos(x, y)`.
pub proof fn lemma_mul_is_mul_pos(x: int, y: int)
    requires
        x >= 0,
    ensures
        x * y == mul_pos(x, y),
{
    reveal(mul_pos);
    lemma_mul_induction_auto(x, |u: int| u >= 0 ==> u * y == mul_pos(u, y));
}

pub proof fn lemma_mul_basics(x: int)
    ensures
        0 * x == 0,
        x * 0 == 0,
        x * 1 == x,
        1 * x == x,
{
}

/// Proof of basic properties of multiplication by `x`, specifically
/// what happens when multiplying by 0 or 1
pub broadcast proof fn lemma_mul_basics_1(x: int)
    ensures
        #[trigger] (0 * x) == 0,
{
}

/// Proof of basic properties of multiplication by `x`, specifically
/// what happens when multiplying by 0 or 1
pub broadcast proof fn lemma_mul_basics_2(x: int)
    ensures
        #[trigger] (x * 0) == 0,
{
}

/// Proof of basic properties of multiplication by `x`, specifically
/// what happens when multiplying by 0 or 1
pub broadcast proof fn lemma_mul_basics_3(x: int)
    ensures
        #[trigger] (x * 1) == x,
{
}

/// Proof of basic properties of multiplication by `x`, specifically
/// what happens when multiplying by 0 or 1
pub broadcast proof fn lemma_mul_basics_4(x: int)
    ensures
        #[trigger] (1 * x) == x,
{
}

pub broadcast group group_mul_basics {
    lemma_mul_basics_1,
    lemma_mul_basics_2,
    lemma_mul_basics_3,
    lemma_mul_basics_4,
}

/// Proof that `x * y` is nonzero if and only if both `x` and `y` are nonzero
pub broadcast proof fn lemma_mul_nonzero(x: int, y: int)
    ensures
        #[trigger] (x * y) != 0 <==> x != 0 && y != 0,
{
    MulINL::lemma_mul_nonzero(x, y);
}

/// Proof that any integer multiplied by 0 results in a product of 0
pub broadcast proof fn lemma_mul_by_zero_is_zero(x: int)
    ensures
        #![trigger x * 0]
        #![trigger 0 * x]
        x * 0 == 0 && 0 * x == 0,
{
    assert forall|x: int| #![trigger x * 0] #![trigger 0 * x] x * 0 == 0 && 0 * x == 0 by {
        lemma_mul_basics(x);
    }
}

/// Proof that multiplication is associative, specifically that
/// `x * (y * z) == (x * y) * z`.
pub broadcast proof fn lemma_mul_is_associative(x: int, y: int, z: int)
    ensures
        #![trigger x * (y * z)]
        #![trigger (x * y) * z]
        x * (y * z) == (x * y) * z,
{
    MulINL::lemma_mul_is_associative(x, y, z);
}

/// Proof that multiplication is commutative, specifically that
/// `x * y == y * x`.
pub broadcast proof fn lemma_mul_is_commutative(x: int, y: int)
    ensures
        #[trigger] (x * y) == y * x,
{
}

/// Proof that, since the product of the two integers `x` and `y` is
/// nonnegative, that product is greater than or equal to each of `x`
/// and `y`
pub broadcast proof fn lemma_mul_ordering(x: int, y: int)
    requires
        x != 0,
        y != 0,
        0 <= x * y,
    ensures
        #[trigger] (x * y) >= x && x * y >= y,
{
    MulINL::lemma_mul_ordering(x, y);
}

/*
    We don't port LemmaMulEquality or LemmaMulEqualityAuto from the
    Dafny standard library for arithmetic, since they're never useful.
    They say that `x == y ==> x * z == y * z`, which is trivial. It
    follows immediately from the basic SMT axiom that functions and
    operators (including multiplication) have equal values when
    applied to equal arguments.
*/

/// Proof that, since `x <= y` and `z >= 0`, `x * z <= y * z`
pub broadcast proof fn lemma_mul_inequality(x: int, y: int, z: int)
    requires
        x <= y,
        z >= 0,
    ensures
        #[trigger] (x * z) <= #[trigger] (y * z),
{
    lemma_mul_induction_auto(z, |u: int| u >= 0 ==> x * u <= y * u);
}

/// Proof that since `x < y` and `z > 0`, `x * z < y * z`.
pub broadcast proof fn lemma_mul_strict_inequality(x: int, y: int, z: int)
    requires
        x < y,
        z > 0,
    ensures
        #[trigger] (x * z) < #[trigger] (y * z),
{
    MulINL::lemma_mul_strict_inequality(x, y, z);
}

/// Proof that since `x` is bounded above by `xbound` and `y` is
/// bounded above by `ybound`, the product of `x` and `y` is bounded
/// above by the product of the bounds
pub broadcast proof fn lemma_mul_upper_bound(x: int, xbound: int, y: int, ybound: int)
    requires
        x <= xbound,
        y <= ybound,
        0 <= x,
        0 <= y,
    ensures
        #[trigger] (x * y) <= #[trigger] (xbound * ybound),
{
    lemma_mul_inequality(x, xbound, y);
    lemma_mul_inequality(y, ybound, xbound);
}

/// Proof that when `x` has an exclusive upper bound `xbound` and `y`
/// has an exclusive upper bound `ybound`, that the product of `x` and
/// `y` is bounded above by the product of the predecessors of their
/// upper bounds. In other words, `x * y <= (xbound - 1) * (ybound - 1)`.
pub broadcast proof fn lemma_mul_strict_upper_bound(x: int, xbound: int, y: int, ybound: int)
    requires
        x < xbound,
        y < ybound,
        0 < x,
        0 < y,
    ensures
        #[trigger] (x * y) <= #[trigger] ((xbound - 1) * (ybound - 1)),
{
    lemma_mul_inequality(x, xbound - 1, y);
    lemma_mul_inequality(y, ybound - 1, xbound - 1);
}

/// Proof that multiplying the positive integer `x` by respectively
/// `y` and `z` maintains the order of `y` and `z`. Specifically, `y
/// <= z ==> x * y <= x * z` and `y < z ==> x * y < x * z`.
pub broadcast proof fn lemma_mul_left_inequality(x: int, y: int, z: int)
    requires
        0 < x,
    ensures
        y <= z ==> #[trigger] (x * y) <= #[trigger] (x * z),
        y < z ==> x * y < x * z,
{
    lemma_mul_induction_auto(x, |u: int| u > 0 ==> y <= z ==> u * y <= u * z);
    lemma_mul_induction_auto(x, |u: int| u > 0 ==> y < z ==> u * y < u * z);
}

/// Proof that if `x` and `y` have equal results when multiplied by
/// nonzero `m`, then they're equal
pub broadcast proof fn lemma_mul_equality_converse(m: int, x: int, y: int)
    requires
        m != 0,
        #[trigger] (m * x) == #[trigger] (m * y),
    ensures
        x == y,
{
    lemma_mul_induction_auto(m, |u| x > y && 0 < u ==> x * u > y * u);
    lemma_mul_induction_auto(m, |u: int| x < y && 0 < u ==> x * u < y * u);
    lemma_mul_induction_auto(m, |u: int| x > y && 0 > u ==> x * u < y * u);
    lemma_mul_induction_auto(m, |u: int| x < y && 0 > u ==> x * u > y * u);
}

/// Proof that since `x * z <= y * z` and `z > 0`, that `x <= y`
pub broadcast proof fn lemma_mul_inequality_converse(x: int, y: int, z: int)
    requires
        #[trigger] (x * z) <= #[trigger] (y * z),
        z > 0,
    ensures
        x <= y,
{
    lemma_mul_induction_auto(z, |u: int| x * u <= y * u && u > 0 ==> x <= y);
}

/// Proof that since `x * z < y * z` and `z >= 0`, we know `x < y`
pub broadcast proof fn lemma_mul_strict_inequality_converse(x: int, y: int, z: int)
    requires
        #[trigger] (x * z) < #[trigger] (y * z),
        z >= 0,
    ensures
        x < y,
{
    lemma_mul_induction_auto(z, |u: int| x * u < y * u && u >= 0 ==> x < y);
}

/// Proof that multiplication distributes over addition, specifically that
/// `x * (y + z) == x * y + x * z`
pub broadcast proof fn lemma_mul_is_distributive_add(x: int, y: int, z: int)
    ensures
        #[trigger] (x * (y + z)) == x * y + x * z,
{
    MulINL::lemma_mul_is_distributive_add(x, y, z);
}

/// Proof that multiplication distributes over addition, specifically that
/// `(y + z) * x == y * x + z * x`
pub broadcast proof fn lemma_mul_is_distributive_add_other_way(x: int, y: int, z: int)
    ensures
        #[trigger] ((y + z) * x) == y * x + z * x,
{
    broadcast use group_mul_properties_internal;

}

/// Proof that multiplication distributes over subtraction, specifically that
/// `x * (y - z) == x * y - x * z`
pub broadcast proof fn lemma_mul_is_distributive_sub(x: int, y: int, z: int)
    ensures
        #[trigger] (x * (y - z)) == x * y - x * z,
{
    broadcast use group_mul_properties_internal;

}

/// Proof that multiplication distributes over subtraction when the
/// subtraction happens in the multiplicand (i.e., in the left-hand
/// argument to `*`). Specifically, `(y - z) * x == y * x - z * x`.
pub broadcast proof fn lemma_mul_is_distributive_sub_other_way(x: int, y: int, z: int)
    ensures
        #[trigger] ((y - z) * x) == y * x - z * x,
{
    lemma_mul_is_distributive_sub(x, y, z);
    lemma_mul_is_commutative(x, y - z);
    lemma_mul_is_commutative(x, y);
    lemma_mul_is_commutative(x, z);
}

pub broadcast group group_mul_is_distributive {
    lemma_mul_is_distributive_add,
    lemma_mul_is_distributive_add_other_way,
    lemma_mul_is_distributive_sub,
    lemma_mul_is_distributive_sub_other_way,
}

pub broadcast group group_mul_is_commutative_and_distributive {
    lemma_mul_is_commutative,
    group_mul_is_distributive,
}

/// Proof that multiplication is commutative, distributes over
/// addition, and distributes over subtraction, in the specific cases
/// where one of the arguments to the multiplication is `x` and the
/// other arguments are `y` and `z`
proof fn lemma_mul_is_distributive(x: int, y: int, z: int)
    ensures
        x * (y + z) == x * y + x * z,
        x * (y - z) == x * y - x * z,
        (y + z) * x == y * x + z * x,
        (y - z) * x == y * x - z * x,
        x * (y + z) == (y + z) * x,
        x * (y - z) == (y - z) * x,
        x * y == y * x,
        x * z == z * x,
{
    broadcast use group_mul_is_commutative_and_distributive;

}

/// Proof that multiplication distributes over addition and
/// subtraction, whether the addition or subtraction happens in the
/// first or the second argument to the multiplication
// pub broadcast proof fn lemma_mul_is_distributive_plus(x: int, y: int, z: int)
//     ensures
//         forall|x: int, y: int, z: int| #[trigger] (x * (y + z)) == x * y + x * z,
//         forall|x: int, y: int, z: int| #[trigger] (x * (y - z)) == x * y - x * z,
//         forall|x: int, y: int, z: int| #[trigger] ((y + z) * x) == y * x + z * x,
//         forall|x: int, y: int, z: int| #[trigger] ((y - z) * x) == y * x - z * x,
// {
//     lemma_mul_is_distributive_add_auto();
//     lemma_mul_is_distributive_sub_auto();
//     broadcast use lemma_mul_is_commutative;
// }
/// Proof that if `x` and `y` are both positive, then their product is
/// also positive
pub broadcast proof fn lemma_mul_strictly_positive(x: int, y: int)
    ensures
        (0 < x && 0 < y) ==> (0 < #[trigger] (x * y)),
{
    MulINL::lemma_mul_strictly_positive(x, y);
}

/// Proof that since `x > 1` and `y > 0`, `y < x * y`
pub broadcast proof fn lemma_mul_strictly_increases(x: int, y: int)
    requires
        1 < x,
        0 < y,
    ensures
        y < #[trigger] (x * y),
{
    lemma_mul_induction_auto(x, |u: int| 1 < u ==> y < u * y);
}

/// Proof that since `x` and `y` are both positive, their product is
/// greater than or equal to `y`
pub broadcast proof fn lemma_mul_increases(x: int, y: int)
    requires
        0 < x,
        0 < y,
    ensures
        y <= #[trigger] (x * y),
{
    lemma_mul_induction_auto(x, |u: int| 0 < u ==> y <= u * y);
}

/// Proof that since `x` and `y` are non-negative, their product is
/// non-negative
pub broadcast proof fn lemma_mul_nonnegative(x: int, y: int)
    requires
        0 <= x,
        0 <= y,
    ensures
        0 <= #[trigger] (x * y),
{
    lemma_mul_induction_auto(x, |u: int| 0 <= u ==> 0 <= u * y);
}

/// Proof that negating `x` or `y` before multiplying them together
/// produces the negation of the product of `x` and `y`
pub broadcast proof fn lemma_mul_unary_negation(x: int, y: int)
    ensures
        #![trigger (-x) * y]
        #![trigger x * (-y)]
        (-x) * y == -(x * y) == x * (-y),
{
    lemma_mul_induction_auto(x, |u: int| (-u) * y == -(u * y) == u * (-y));
}

/// Proof that multiplying `-x` and `-y` produces the same product as
/// multiplying `x` and `y`
pub broadcast proof fn lemma_mul_cancels_negatives(x: int, y: int)
    ensures
        #[trigger] (x * y) == (-x) * (-y),
{
    lemma_mul_induction_auto(x, |u: int| (-u) * y == -(u * y) == u * (-y));
}

pub broadcast group group_mul_properties {
    group_mul_basics,
    lemma_mul_strict_inequality,
    lemma_mul_inequality,
    group_mul_is_commutative_and_distributive,
    lemma_mul_is_associative,
    lemma_mul_ordering,
    lemma_mul_nonzero,
    lemma_mul_nonnegative,
    lemma_mul_strictly_increases,
    lemma_mul_increases,
}

// Check that the group_mul_properties broadcast group group_provides the same properties as the _auto lemma it replaces
proof fn lemma_mul_properties_prove_mul_properties_auto()
    ensures
        forall|x: int, y: int| #[trigger] (x * y) == y * x,
        forall|x: int| #![trigger x * 1] #![trigger 1 * x] x * 1 == 1 * x == x,
        forall|x: int, y: int, z: int| x < y && z > 0 ==> #[trigger] (x * z) < #[trigger] (y * z),
        forall|x: int, y: int, z: int|
            x <= y && z >= 0 ==> #[trigger] (x * z) <= #[trigger] (y * z),
        forall|x: int, y: int, z: int| #[trigger] (x * (y + z)) == x * y + x * z,
        forall|x: int, y: int, z: int| #[trigger] (x * (y - z)) == x * y - x * z,
        forall|x: int, y: int, z: int| #[trigger] ((y + z) * x) == y * x + z * x,
        forall|x: int, y: int, z: int| #[trigger] ((y - z) * x) == y * x - z * x,
        forall|x: int, y: int, z: int|
            #![trigger x * (y * z)]
            #![trigger (x * y) * z]
            x * (y * z) == (x * y) * z,
        forall|x: int, y: int| #[trigger] (x * y) != 0 <==> x != 0 && y != 0,
        forall|x: int, y: int| 0 <= x && 0 <= y ==> 0 <= #[trigger] (x * y),
        forall|x: int, y: int|
            0 < x && 0 < y && 0 <= x * y ==> x <= #[trigger] (x * y) && y <= (x * y),
        forall|x: int, y: int| (1 < x && 0 < y) ==> (y < #[trigger] (x * y)),
        forall|x: int, y: int| (0 < x && 0 < y) ==> (y <= #[trigger] (x * y)),
        forall|x: int, y: int| (0 < x && 0 < y) ==> (0 < #[trigger] (x * y)),
{
    broadcast use group_mul_properties;

}

} // verus!