1#[allow(unused_imports)]
3use super::pervasive::*;
4#[allow(unused_imports)]
5use super::prelude::*;
6#[allow(unused_imports)]
7use super::seq::*;
8#[allow(unused_imports)]
9use super::set::Set;
10
11verus! {
12
13pub open spec fn injective<X, Y>(r: spec_fn(X) -> Y) -> bool {
14 forall|x1: X, x2: X| #[trigger] r(x1) == #[trigger] r(x2) ==> x1 == x2
15}
16
17pub open spec fn injective_on<X, Y>(r: spec_fn(X) -> Y, dom: Set<X>) -> bool {
18 forall|x1: X, x2: X|
19 dom.contains(x1) && dom.contains(x2) && #[trigger] r(x1) == #[trigger] r(x2) ==> x1 == x2
20}
21
22pub open spec fn commutative<T, U>(r: spec_fn(T, T) -> U) -> bool {
23 forall|x: T, y: T| #[trigger] r(x, y) == #[trigger] r(y, x)
24}
25
26pub open spec fn associative<T>(r: spec_fn(T, T) -> T) -> bool {
27 forall|x: T, y: T, z: T| #[trigger] r(x, r(y, z)) == #[trigger] r(r(x, y), z)
28}
29
30pub open spec fn reflexive<T>(r: spec_fn(T, T) -> bool) -> bool {
31 forall|x: T| #[trigger] r(x, x)
32}
33
34pub open spec fn irreflexive<T>(r: spec_fn(T, T) -> bool) -> bool {
35 forall|x: T| #[trigger] r(x, x) == false
36}
37
38pub open spec fn antisymmetric<T>(r: spec_fn(T, T) -> bool) -> bool {
39 forall|x: T, y: T| #[trigger] r(x, y) && #[trigger] r(y, x) ==> x == y
40}
41
42pub open spec fn asymmetric<T>(r: spec_fn(T, T) -> bool) -> bool {
43 forall|x: T, y: T| #[trigger] r(x, y) ==> #[trigger] r(y, x) == false
44}
45
46pub open spec fn symmetric<T>(r: spec_fn(T, T) -> bool) -> bool {
47 forall|x: T, y: T| #[trigger] r(x, y) <==> #[trigger] r(y, x)
48}
49
50pub open spec fn connected<T>(r: spec_fn(T, T) -> bool) -> bool {
51 forall|x: T, y: T| x != y ==> #[trigger] r(x, y) || #[trigger] r(y, x)
52}
53
54pub open spec fn strongly_connected<T>(r: spec_fn(T, T) -> bool) -> bool {
55 forall|x: T, y: T| #[trigger] r(x, y) || #[trigger] r(y, x)
56}
57
58pub open spec fn transitive<T>(r: spec_fn(T, T) -> bool) -> bool {
59 forall|x: T, y: T, z: T| #[trigger] r(x, y) && #[trigger] r(y, z) ==> r(x, z)
60}
61
62pub open spec fn total_ordering<T>(r: spec_fn(T, T) -> bool) -> bool {
63 &&& reflexive(r)
64 &&& antisymmetric(r)
65 &&& transitive(r)
66 &&& strongly_connected(r)
67}
68
69pub open spec fn strict_total_ordering<T>(r: spec_fn(T, T) -> bool) -> bool {
70 &&& irreflexive(r)
71 &&& antisymmetric(r)
72 &&& transitive(r)
73 &&& connected(r)
74}
75
76pub open spec fn pre_ordering<T>(r: spec_fn(T, T) -> bool) -> bool {
77 &&& reflexive(r)
78 &&& transitive(r)
79}
80
81pub open spec fn partial_ordering<T>(r: spec_fn(T, T) -> bool) -> bool {
82 &&& reflexive(r)
83 &&& transitive(r)
84 &&& antisymmetric(r)
85}
86
87pub open spec fn equivalence_relation<T>(r: spec_fn(T, T) -> bool) -> bool {
88 &&& reflexive(r)
89 &&& symmetric(r)
90 &&& transitive(r)
91}
92
93pub open spec fn sorted_by<T>(a: Seq<T>, less_than: spec_fn(T, T) -> bool) -> bool {
96 forall|i: int, j: int| 0 <= i < j < a.len() ==> #[trigger] less_than(a[i], a[j])
97}
98
99pub open spec fn is_least<T>(leq: spec_fn(T, T) -> bool, min: T, s: Set<T>) -> bool {
104 s.contains(min) && forall|x: T| s.contains(x) ==> #[trigger] leq(min, x)
105}
106
107pub open spec fn is_minimal<T>(leq: spec_fn(T, T) -> bool, min: T, s: Set<T>) -> bool {
109 s.contains(min) && forall|x: T|
110 s.contains(x) && #[trigger] leq(x, min) ==> #[trigger] leq(min, x)
111}
112
113pub open spec fn is_greatest<T>(leq: spec_fn(T, T) -> bool, max: T, s: Set<T>) -> bool {
116 s.contains(max) && forall|x: T| s.contains(x) ==> #[trigger] leq(x, max)
117}
118
119pub open spec fn is_maximal<T>(leq: spec_fn(T, T) -> bool, max: T, s: Set<T>) -> bool {
121 s.contains(max) && forall|x: T|
122 s.contains(x) && #[trigger] leq(max, x) ==> #[trigger] leq(x, max)
123}
124
125pub proof fn lemma_new_first_element_still_sorted_by<T>(
126 x: T,
127 s: Seq<T>,
128 less_than: spec_fn(T, T) -> bool,
129)
130 requires
131 sorted_by(s, less_than),
132 s.len() == 0 || less_than(x, s[0]),
133 total_ordering(less_than),
134 ensures
135 sorted_by(seq![x].add(s), less_than),
136{
137 broadcast use group_seq_axioms;
138
139 if s.len() > 1 {
140 assert forall|index: int| 0 < index < s.len() implies #[trigger] less_than(x, s[index]) by {
141 assert(less_than(s[0], s[index]));
142 };
143 }
144}
145
146}