1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
#[allow(unused_imports)]
use super::multiset::Multiset;
#[allow(unused_imports)]
use super::pervasive::*;
use super::prelude::Seq;
#[allow(unused_imports)]
use super::prelude::*;
#[allow(unused_imports)]
use super::relations::*;
#[allow(unused_imports)]
use super::set::*;

verus! {

broadcast use super::set::group_set_axioms;

impl<A> Set<A> {
    /// Is `true` if called by a "full" set, i.e., a set containing every element of type `A`.
    pub open spec fn is_full(self) -> bool {
        self == Set::<A>::full()
    }

    /// Is `true` if called by an "empty" set, i.e., a set containing no elements and has length 0
    pub open spec fn is_empty(self) -> (b: bool) {
        self.len() == 0
    }

    /// Returns the set contains an element `f(x)` for every element `x` in `self`.
    pub open spec fn map<B>(self, f: spec_fn(A) -> B) -> Set<B> {
        Set::new(|a: B| exists|x: A| self.contains(x) && a == f(x))
    }

    /// Folds the set, applying `f` to perform the fold. The next element for the fold is chosen by
    /// the choose operator.
    ///
    /// Given a set `s = {x0, x1, x2, ..., xn}`, applying this function `s.fold(init, f)`
    /// returns `f(...f(f(init, x0), x1), ..., xn)`.
    pub open spec fn fold<E>(self, init: E, f: spec_fn(E, A) -> E) -> E
        decreases self.len(),
    {
        if self.finite() {
            if self.len() == 0 {
                init
            } else {
                let a = self.choose();
                self.remove(a).fold(f(init, a), f)
            }
        } else {
            arbitrary()
        }
    }

    /// Converts a set into a sequence with an arbitrary ordering.
    pub open spec fn to_seq(self) -> Seq<A>
        recommends
            self.finite(),
        decreases self.len(),
        when self.finite()
        via Self::decreases_proof
    {
        if self.len() == 0 {
            Seq::<A>::empty()
        } else {
            let x = self.choose();
            Seq::<A>::empty().push(x) + self.remove(x).to_seq()
        }
    }

    // Helper function to prove termination of function to_seq
    #[via_fn]
    proof fn decreases_proof(self) {
        lemma_set_properties::<A>();
        if self.len() > 0 {
            let x = self.choose();
            assert(self.contains(x));
            assert(self.remove(x).len() < self.len());
        }
    }

    /// Converts a set into a sequence sorted by the given ordering function `leq`
    pub open spec fn to_sorted_seq(self, leq: spec_fn(A, A) -> bool) -> Seq<A> {
        self.to_seq().sort_by(leq)
    }

    /// A singleton set has at least one element and any two elements are equal.
    pub open spec fn is_singleton(self) -> bool {
        &&& self.len() > 0
        &&& (forall|x: A, y: A| self.contains(x) && self.contains(y) ==> x == y)
    }

    /// Any totally-ordered set contains a unique minimal (equivalently, least) element.
    /// Returns an arbitrary value if r is not a total ordering
    pub closed spec fn find_unique_minimal(self, r: spec_fn(A, A) -> bool) -> A
        recommends
            total_ordering(r),
            self.len() > 0,
            self.finite(),
        decreases self.len(),
        when self.finite()
        via Self::prove_decrease_min_unique
    {
        if self.len() <= 1 {
            self.choose()
        } else {
            let x = choose|x: A| self.contains(x);
            let min = self.remove(x).find_unique_minimal(r);
            if r(min, x) {
                min
            } else {
                x
            }
        }
    }

    #[via_fn]
    proof fn prove_decrease_min_unique(self, r: spec_fn(A, A) -> bool) {
        lemma_set_properties::<A>();
        if self.len() > 0 {
            let x = self.choose();
            assert(self.contains(x));
            assert(self.remove(x).len() < self.len());
        }
    }

    /// Proof of correctness and expected behavior for `Set::find_unique_minimal`.
    pub proof fn find_unique_minimal_ensures(self, r: spec_fn(A, A) -> bool)
        requires
            self.finite(),
            self.len() > 0,
            total_ordering(r),
        ensures
            is_minimal(r, self.find_unique_minimal(r), self) && (forall|min: A|
                is_minimal(r, min, self) ==> self.find_unique_minimal(r) == min),
        decreases self.len(),
    {
        lemma_set_properties::<A>();
        if self.len() == 1 {
            let x = choose|x: A| self.contains(x);
            assert(self.remove(x).insert(x) =~= self);
            assert(is_minimal(r, self.find_unique_minimal(r), self));
        } else {
            let x = choose|x: A| self.contains(x);
            self.remove(x).find_unique_minimal_ensures(r);
            assert(is_minimal(r, self.remove(x).find_unique_minimal(r), self.remove(x)));
            let y = self.remove(x).find_unique_minimal(r);
            let min_updated = self.find_unique_minimal(r);
            assert(!r(y, x) ==> min_updated == x);
            assert(forall|elt: A|
                self.remove(x).contains(elt) && #[trigger] r(elt, y) ==> #[trigger] r(y, elt));
            assert forall|elt: A|
                self.contains(elt) && #[trigger] r(elt, min_updated) implies #[trigger] r(
                min_updated,
                elt,
            ) by {
                assert(r(min_updated, x) || r(min_updated, y));
                if min_updated == y {  // Case where the new min is the old min
                    assert(is_minimal(r, self.find_unique_minimal(r), self));
                } else {  //Case where the new min is the newest element
                    assert(self.remove(x).contains(elt) || elt == x);
                    assert(min_updated == x);
                    assert(r(x, y) || r(y, x));
                    assert(!r(x, y) || !r(y, x));
                    assert(!(min_updated == y) ==> !r(y, x));
                    assert(r(x, y));
                    if (self.remove(x).contains(elt)) {
                        assert(r(elt, y) && r(y, elt) ==> elt == y);
                    } else {
                    }
                }
            }
            assert forall|min_poss: A|
                is_minimal(r, min_poss, self) implies self.find_unique_minimal(r) == min_poss by {
                assert(is_minimal(r, min_poss, self.remove(x)) || x == min_poss);
                assert(r(min_poss, self.find_unique_minimal(r)));
            }
        }
    }

    /// Any totally-ordered set contains a unique maximal (equivalently, greatest) element.
    /// Returns an arbitrary value if r is not a total ordering
    pub closed spec fn find_unique_maximal(self, r: spec_fn(A, A) -> bool) -> A
        recommends
            total_ordering(r),
            self.len() > 0,
        decreases self.len(),
        when self.finite()
        via Self::prove_decrease_max_unique
    {
        if self.len() <= 1 {
            self.choose()
        } else {
            let x = choose|x: A| self.contains(x);
            let max = self.remove(x).find_unique_maximal(r);
            if r(x, max) {
                max
            } else {
                x
            }
        }
    }

    #[via_fn]
    proof fn prove_decrease_max_unique(self, r: spec_fn(A, A) -> bool) {
        lemma_set_properties::<A>();
    }

    /// Proof of correctness and expected behavior for `Set::find_unique_maximal`.
    pub proof fn find_unique_maximal_ensures(self, r: spec_fn(A, A) -> bool)
        requires
            self.finite(),
            self.len() > 0,
            total_ordering(r),
        ensures
            is_maximal(r, self.find_unique_maximal(r), self) && (forall|max: A|
                is_maximal(r, max, self) ==> self.find_unique_maximal(r) == max),
        decreases self.len(),
    {
        lemma_set_properties::<A>();
        if self.len() == 1 {
            let x = choose|x: A| self.contains(x);
            assert(self.remove(x) =~= Set::<A>::empty());
            assert(self.contains(self.find_unique_maximal(r)));
        } else {
            let x = choose|x: A| self.contains(x);
            self.remove(x).find_unique_maximal_ensures(r);
            assert(is_maximal(r, self.remove(x).find_unique_maximal(r), self.remove(x)));
            assert(self.remove(x).insert(x) =~= self);
            let y = self.remove(x).find_unique_maximal(r);
            let max_updated = self.find_unique_maximal(r);
            assert(max_updated == x || max_updated == y);
            assert(!r(x, y) ==> max_updated == x);
            assert forall|elt: A|
                self.contains(elt) && #[trigger] r(max_updated, elt) implies #[trigger] r(
                elt,
                max_updated,
            ) by {
                assert(r(x, max_updated) || r(y, max_updated));
                if max_updated == y {  // Case where the new max is the old max
                    assert(r(elt, max_updated));
                    assert(r(x, max_updated));
                    assert(is_maximal(r, self.find_unique_maximal(r), self));
                } else {  //Case where the new max is the newest element
                    assert(self.remove(x).contains(elt) || elt == x);
                    assert(max_updated == x);
                    assert(r(x, y) || r(y, x));
                    assert(!r(x, y) || !r(y, x));
                    assert(!(max_updated == y) ==> !r(x, y));
                    assert(r(y, x));
                    if (self.remove(x).contains(elt)) {
                        assert(r(y, elt) ==> r(elt, y));
                        assert(r(y, elt) && r(elt, y) ==> elt == y);
                        assert(r(elt, x));
                        assert(r(elt, max_updated))
                    } else {
                    }
                }
            }
            assert forall|max_poss: A|
                is_maximal(r, max_poss, self) implies self.find_unique_maximal(r) == max_poss by {
                assert(is_maximal(r, max_poss, self.remove(x)) || x == max_poss);
                assert(r(max_poss, self.find_unique_maximal(r)));
                assert(r(self.find_unique_maximal(r), max_poss));
            }
        }
    }

    /// Converts a set into a multiset where each element from the set has
    /// multiplicity 1 and any other element has multiplicity 0.
    pub open spec fn to_multiset(self) -> Multiset<A>
        decreases self.len(),
        when self.finite()
    {
        if self.len() == 0 {
            Multiset::<A>::empty()
        } else {
            Multiset::<A>::empty().insert(self.choose()).add(
                self.remove(self.choose()).to_multiset(),
            )
        }
    }

    /// A finite set with length 0 is equivalent to the empty set.
    pub proof fn lemma_len0_is_empty(self)
        requires
            self.finite(),
            self.len() == 0,
        ensures
            self == Set::<A>::empty(),
    {
        if exists|a: A| self.contains(a) {
            // derive contradiction:
            assert(self.remove(self.choose()).len() + 1 == 0);
        }
        assert(self =~= Set::empty());
    }

    /// A singleton set has length 1.
    pub proof fn lemma_singleton_size(self)
        requires
            self.is_singleton(),
        ensures
            self.len() == 1,
    {
        lemma_set_properties::<A>();
        assert(self.remove(self.choose()) =~= Set::empty());
    }

    /// A set has exactly one element, if and only if, it has at least one element and any two elements are equal.
    pub proof fn lemma_is_singleton(s: Set<A>)
        requires
            s.finite(),
        ensures
            s.is_singleton() == (s.len() == 1),
    {
        if s.is_singleton() {
            s.lemma_singleton_size();
        }
        if s.len() == 1 {
            assert forall|x: A, y: A| s.contains(x) && s.contains(y) implies x == y by {
                let x = choose|x: A| s.contains(x);
                lemma_set_properties::<A>();
                assert(s.remove(x).len() == 0);
                assert(s.insert(x) =~= s);
            }
        }
    }

    /// The result of filtering a finite set is finite and has size less than or equal to the original set.
    pub proof fn lemma_len_filter(self, f: spec_fn(A) -> bool)
        requires
            self.finite(),
        ensures
            self.filter(f).finite(),
            self.filter(f).len() <= self.len(),
        decreases self.len(),
    {
        lemma_len_intersect::<A>(self, Set::new(f));
    }

    /// In a pre-ordered set, a greatest element is necessarily maximal.
    pub proof fn lemma_greatest_implies_maximal(self, r: spec_fn(A, A) -> bool, max: A)
        requires
            pre_ordering(r),
        ensures
            is_greatest(r, max, self) ==> is_maximal(r, max, self),
    {
    }

    /// In a pre-ordered set, a least element is necessarily minimal.
    pub proof fn lemma_least_implies_minimal(self, r: spec_fn(A, A) -> bool, min: A)
        requires
            pre_ordering(r),
        ensures
            is_least(r, min, self) ==> is_minimal(r, min, self),
    {
    }

    /// In a totally-ordered set, an element is maximal if and only if it is a greatest element.
    pub proof fn lemma_maximal_equivalent_greatest(self, r: spec_fn(A, A) -> bool, max: A)
        requires
            total_ordering(r),
        ensures
            is_greatest(r, max, self) <==> is_maximal(r, max, self),
    {
        assert(is_maximal(r, max, self) ==> forall|x: A|
            !self.contains(x) || !r(max, x) || r(x, max));
    }

    /// In a totally-ordered set, an element is maximal if and only if it is a greatest element.
    pub proof fn lemma_minimal_equivalent_least(self, r: spec_fn(A, A) -> bool, min: A)
        requires
            total_ordering(r),
        ensures
            is_least(r, min, self) <==> is_minimal(r, min, self),
    {
        assert(is_minimal(r, min, self) ==> forall|x: A|
            !self.contains(x) || !r(x, min) || r(min, x));
    }

    /// In a partially-ordered set, there exists at most one least element.
    pub proof fn lemma_least_is_unique(self, r: spec_fn(A, A) -> bool)
        requires
            partial_ordering(r),
        ensures
            forall|min: A, min_prime: A|
                is_least(r, min, self) && is_least(r, min_prime, self) ==> min == min_prime,
    {
        assert forall|min: A, min_prime: A|
            is_least(r, min, self) && is_least(r, min_prime, self) implies min == min_prime by {
            assert(r(min, min_prime));
            assert(r(min_prime, min));
        }
    }

    /// In a partially-ordered set, there exists at most one greatest element.
    pub proof fn lemma_greatest_is_unique(self, r: spec_fn(A, A) -> bool)
        requires
            partial_ordering(r),
        ensures
            forall|max: A, max_prime: A|
                is_greatest(r, max, self) && is_greatest(r, max_prime, self) ==> max == max_prime,
    {
        assert forall|max: A, max_prime: A|
            is_greatest(r, max, self) && is_greatest(r, max_prime, self) implies max
            == max_prime by {
            assert(r(max_prime, max));
            assert(r(max, max_prime));
        }
    }

    /// In a totally-ordered set, there exists at most one minimal element.
    pub proof fn lemma_minimal_is_unique(self, r: spec_fn(A, A) -> bool)
        requires
            total_ordering(r),
        ensures
            forall|min: A, min_prime: A|
                is_minimal(r, min, self) && is_minimal(r, min_prime, self) ==> min == min_prime,
    {
        assert forall|min: A, min_prime: A|
            is_minimal(r, min, self) && is_minimal(r, min_prime, self) implies min == min_prime by {
            self.lemma_minimal_equivalent_least(r, min);
            self.lemma_minimal_equivalent_least(r, min_prime);
            self.lemma_least_is_unique(r);
        }
    }

    /// In a totally-ordered set, there exists at most one maximal element.
    pub proof fn lemma_maximal_is_unique(self, r: spec_fn(A, A) -> bool)
        requires
            self.finite(),
            total_ordering(r),
        ensures
            forall|max: A, max_prime: A|
                is_maximal(r, max, self) && is_maximal(r, max_prime, self) ==> max == max_prime,
    {
        assert forall|max: A, max_prime: A|
            is_maximal(r, max, self) && is_maximal(r, max_prime, self) implies max == max_prime by {
            self.lemma_maximal_equivalent_greatest(r, max);
            self.lemma_maximal_equivalent_greatest(r, max_prime);
            self.lemma_greatest_is_unique(r);
        }
    }
}

/// The size of a union of two sets is less than or equal to the size of
/// both individual sets combined.
pub proof fn lemma_len_union<A>(s1: Set<A>, s2: Set<A>)
    requires
        s1.finite(),
        s2.finite(),
    ensures
        s1.union(s2).len() <= s1.len() + s2.len(),
    decreases s1.len(),
{
    if s1.is_empty() {
        assert(s1.union(s2) =~= s2);
    } else {
        let a = s1.choose();
        if s2.contains(a) {
            assert(s1.union(s2) =~= s1.remove(a).union(s2));
        } else {
            assert(s1.union(s2).remove(a) =~= s1.remove(a).union(s2));
        }
        lemma_len_union::<A>(s1.remove(a), s2);
    }
}

/// The size of a union of two sets is greater than or equal to the size of
/// both individual sets.
pub proof fn lemma_len_union_ind<A>(s1: Set<A>, s2: Set<A>)
    requires
        s1.finite(),
        s2.finite(),
    ensures
        s1.union(s2).len() >= s1.len(),
        s1.union(s2).len() >= s2.len(),
    decreases s2.len(),
{
    lemma_set_properties::<A>();
    if s2.len() == 0 {
    } else {
        let y = choose|y: A| s2.contains(y);
        if s1.contains(y) {
            assert(s1.remove(y).union(s2.remove(y)) =~= s1.union(s2).remove(y));
            lemma_len_union_ind(s1.remove(y), s2.remove(y))
        } else {
            assert(s1.union(s2.remove(y)) =~= s1.union(s2).remove(y));
            lemma_len_union_ind(s1, s2.remove(y))
        }
    }
}

/// The size of the intersection of finite set `s1` and set `s2` is less than or equal to the size of `s1`.
pub proof fn lemma_len_intersect<A>(s1: Set<A>, s2: Set<A>)
    requires
        s1.finite(),
    ensures
        s1.intersect(s2).len() <= s1.len(),
    decreases s1.len(),
{
    if s1.is_empty() {
        assert(s1.intersect(s2) =~= s1);
    } else {
        let a = s1.choose();
        assert(s1.intersect(s2).remove(a) =~= s1.remove(a).intersect(s2));
        lemma_len_intersect::<A>(s1.remove(a), s2);
    }
}

/// If `s1` is a subset of finite set `s2`, then the size of `s1` is less than or equal to
/// the size of `s2` and `s1` must be finite.
pub proof fn lemma_len_subset<A>(s1: Set<A>, s2: Set<A>)
    requires
        s2.finite(),
        s1.subset_of(s2),
    ensures
        s1.len() <= s2.len(),
        s1.finite(),
{
    lemma_len_intersect::<A>(s2, s1);
    assert(s2.intersect(s1) =~= s1);
}

/// The size of the difference of finite set `s1` and set `s2` is less than or equal to the size of `s1`.
pub proof fn lemma_len_difference<A>(s1: Set<A>, s2: Set<A>)
    requires
        s1.finite(),
    ensures
        s1.difference(s2).len() <= s1.len(),
    decreases s1.len(),
{
    if s1.is_empty() {
        assert(s1.difference(s2) =~= s1);
    } else {
        let a = s1.choose();
        assert(s1.difference(s2).remove(a) =~= s1.remove(a).difference(s2));
        lemma_len_difference::<A>(s1.remove(a), s2);
    }
}

/// Creates a finite set of integers in the range [lo, hi).
pub open spec fn set_int_range(lo: int, hi: int) -> Set<int> {
    Set::new(|i: int| lo <= i && i < hi)
}

/// If a set solely contains integers in the range [a, b), then its size is
/// bounded by b - a.
pub proof fn lemma_int_range(lo: int, hi: int)
    requires
        lo <= hi,
    ensures
        set_int_range(lo, hi).finite(),
        set_int_range(lo, hi).len() == hi - lo,
    decreases hi - lo,
{
    if lo == hi {
        assert(set_int_range(lo, hi) =~= Set::empty());
    } else {
        lemma_int_range(lo, hi - 1);
        assert(set_int_range(lo, hi - 1).insert(hi - 1) =~= set_int_range(lo, hi));
    }
}

/// If x is a subset of y and the size of x is equal to the size of y, x is equal to y.
pub proof fn lemma_subset_equality<A>(x: Set<A>, y: Set<A>)
    requires
        x.subset_of(y),
        x.finite(),
        y.finite(),
        x.len() == y.len(),
    ensures
        x =~= y,
    decreases x.len(),
{
    lemma_set_properties::<A>();
    if x =~= Set::<A>::empty() {
    } else {
        let e = x.choose();
        lemma_subset_equality(x.remove(e), y.remove(e));
    }
}

/// If an injective function is applied to each element of a set to construct
/// another set, the two sets have the same size.
// the dafny original lemma reasons with partial function f
pub proof fn lemma_map_size<A, B>(x: Set<A>, y: Set<B>, f: spec_fn(A) -> B)
    requires
        injective(f),
        forall|a: A| x.contains(a) ==> y.contains(#[trigger] f(a)),
        forall|b: B| (#[trigger] y.contains(b)) ==> exists|a: A| x.contains(a) && f(a) == b,
        x.finite(),
        y.finite(),
    ensures
        x.len() == y.len(),
    decreases x.len(),
{
    lemma_set_properties::<A>();
    lemma_set_properties::<B>();
    if x.len() != 0 {
        let a = x.choose();
        lemma_map_size(x.remove(a), y.remove(f(a)), f);
    }
}

// This verified lemma used to be an axiom in the Dafny prelude
/// Taking the union of sets `a` and `b` and then taking the union of the result with `b`
/// is the same as taking the union of `a` and `b` once.
pub proof fn lemma_set_union_again1<A>(a: Set<A>, b: Set<A>)
    ensures
        a.union(b).union(b) =~= a.union(b),
{
}

// This verified lemma used to be an axiom in the Dafny prelude
/// Taking the union of sets `a` and `b` and then taking the union of the result with `a`
/// is the same as taking the union of `a` and `b` once.
pub proof fn lemma_set_union_again2<A>(a: Set<A>, b: Set<A>)
    ensures
        a.union(b).union(a) =~= a.union(b),
{
}

// This verified lemma used to be an axiom in the Dafny prelude
/// Taking the intersection of sets `a` and `b` and then taking the intersection of the result with `b`
/// is the same as taking the intersection of `a` and `b` once.
pub proof fn lemma_set_intersect_again1<A>(a: Set<A>, b: Set<A>)
    ensures
        (a.intersect(b)).intersect(b) =~= a.intersect(b),
{
}

// This verified lemma used to be an axiom in the Dafny prelude
/// Taking the intersection of sets `a` and `b` and then taking the intersection of the result with `a`
/// is the same as taking the intersection of `a` and `b` once.
pub proof fn lemma_set_intersect_again2<A>(a: Set<A>, b: Set<A>)
    ensures
        (a.intersect(b)).intersect(a) =~= a.intersect(b),
{
}

// This verified lemma used to be an axiom in the Dafny prelude
/// If set `s2` contains element `a`, then the set difference of `s1` and `s2` does not contain `a`.
pub proof fn lemma_set_difference2<A>(s1: Set<A>, s2: Set<A>, a: A)
    ensures
        s2.contains(a) ==> !s1.difference(s2).contains(a),
{
}

// This verified lemma used to be an axiom in the Dafny prelude
/// If sets `a` and `b` are disjoint, meaning they have no elements in common, then the set difference
/// of `a + b` and `b` is equal to `a` and the set difference of `a + b` and `a` is equal to `b`.
pub proof fn lemma_set_disjoint<A>(a: Set<A>, b: Set<A>)
    ensures
        a.disjoint(b) ==> ((a + b).difference(a) =~= b && (a + b).difference(b) =~= a),
{
}

// Dafny encodes the second clause with a single directional, although
// it should be fine with both directions?
// This verified lemma used to be an axiom in the Dafny prelude
/// Set `s` has length 0 if and only if it is equal to the empty set. If `s` has length greater than 0,
/// Then there must exist an element `x` such that `s` contains `x`.
pub proof fn lemma_set_empty_equivalency_len<A>(s: Set<A>)
    requires
        s.finite(),
    ensures
        (s.len() == 0 <==> s == Set::<A>::empty()) && (s.len() != 0 ==> exists|x: A| s.contains(x)),
{
    assert(s.len() == 0 ==> s =~= Set::empty()) by {
        if s.len() == 0 {
            assert(forall|a: A| !(Set::empty().contains(a)));
            assert(Set::<A>::empty().len() == 0);
            assert(Set::<A>::empty().len() == s.len());
            assert((exists|a: A| s.contains(a)) || (forall|a: A| !s.contains(a)));
            if exists|a: A| s.contains(a) {
                let a = s.choose();
                assert(s.remove(a).len() == s.len() - 1) by {
                    axiom_set_remove_len(s, a);
                }
            }
        }
    }
    assert(s.len() == 0 <== s =~= Set::empty());
}

// This verified lemma used to be an axiom in the Dafny prelude
/// If sets `a` and `b` are disjoint, meaning they share no elements in common, then the length
/// of the union `a + b` is equal to the sum of the lengths of `a` and `b`.
pub proof fn lemma_set_disjoint_lens<A>(a: Set<A>, b: Set<A>)
    requires
        a.finite(),
        b.finite(),
    ensures
        a.disjoint(b) ==> (a + b).len() == a.len() + b.len(),
    decreases a.len(),
{
    if a.len() == 0 {
        lemma_set_empty_equivalency_len(a);
        assert(a + b =~= b);
    } else {
        if a.disjoint(b) {
            let x = a.choose();
            assert(a.remove(x) + b =~= (a + b).remove(x));
            lemma_set_disjoint_lens(a.remove(x), b);
        }
    }
}

// This verified lemma used to be an axiom in the Dafny prelude
/// The length of the union between two sets added to the length of the intersection between the
/// two sets is equal to the sum of the lengths of the two sets.
pub proof fn lemma_set_intersect_union_lens<A>(a: Set<A>, b: Set<A>)
    requires
        a.finite(),
        b.finite(),
    ensures
        (a + b).len() + a.intersect(b).len() == a.len() + b.len(),
    decreases a.len(),
{
    if a.len() == 0 {
        lemma_set_empty_equivalency_len(a);
        assert(a + b =~= b);
        assert(a.intersect(b) =~= Set::empty());
        assert(a.intersect(b).len() == 0);
    } else {
        let x = a.choose();
        lemma_set_intersect_union_lens(a.remove(x), b);
        if (b.contains(x)) {
            assert(a.remove(x) + b =~= (a + b));
            assert(a.intersect(b).remove(x) =~= a.remove(x).intersect(b));
        } else {
            assert(a.remove(x) + b =~= (a + b).remove(x));
            assert(a.remove(x).intersect(b) =~= a.intersect(b));
        }
    }
}

// This verified lemma used to be an axiom in the Dafny prelude
/// The length of the set difference `A \ B` added to the length of the set difference `B \ A` added to
/// the length of the intersection `A ∩ B` is equal to the length of the union `A + B`.
///
/// The length of the set difference `A \ B` is equal to the length of `A` minus the length of the
/// intersection `A ∩ B`.
pub proof fn lemma_set_difference_len<A>(a: Set<A>, b: Set<A>)
    requires
        a.finite(),
        b.finite(),
    ensures
        (a.difference(b).len() + b.difference(a).len() + a.intersect(b).len() == (a + b).len()) && (
        a.difference(b).len() == a.len() - a.intersect(b).len()),
    decreases a.len(),
{
    if a.len() == 0 {
        lemma_set_empty_equivalency_len(a);
        assert(a.difference(b) =~= Set::empty());
        assert(b.difference(a) =~= b);
        assert(a.intersect(b) =~= Set::empty());
        assert(a + b =~= b);
    } else {
        let x = a.choose();
        lemma_set_difference_len(a.remove(x), b);
        if b.contains(x) {
            assert(a.intersect(b).remove(x) =~= a.remove(x).intersect(b));
            assert(a.remove(x).difference(b) =~= a.difference(b));
            assert(b.difference(a.remove(x)).remove(x) =~= b.difference(a));
            assert(a.remove(x) + b =~= a + b);
        } else {
            assert(a.remove(x) + b =~= (a + b).remove(x));
            assert(a.remove(x).difference(b) =~= a.difference(b).remove(x));
            assert(b.difference(a.remove(x)) =~= b.difference(a));
            assert(a.remove(x).intersect(b) =~= a.intersect(b));
        }
    }
}

/// Properties of sets from the Dafny prelude (which were axioms in Dafny, but proven here in Verus)
pub proof fn lemma_set_properties<A>()
    ensures
        forall|a: Set<A>, b: Set<A>| #[trigger] a.union(b).union(b) == a.union(b),  //from lemma_set_union_again1
        forall|a: Set<A>, b: Set<A>| #[trigger] a.union(b).union(a) == a.union(b),  //from lemma_set_union_again2
        forall|a: Set<A>, b: Set<A>| #[trigger] (a.intersect(b)).intersect(b) == a.intersect(b),  //from lemma_set_intersect_again1
        forall|a: Set<A>, b: Set<A>| #[trigger] (a.intersect(b)).intersect(a) == a.intersect(b),  //from lemma_set_intersect_again2
        forall|s1: Set<A>, s2: Set<A>, a: A| s2.contains(a) ==> !s1.difference(s2).contains(a),  //from lemma_set_difference2
        forall|a: Set<A>, b: Set<A>|
            a.disjoint(b) ==> ((#[trigger] (a + b)).difference(a) == b && (a + b).difference(b)
                == a),  //from lemma_set_disjoint
        forall|s: Set<A>| #[trigger] s.len() != 0 && s.finite() ==> exists|a: A| s.contains(a),
        forall|a: Set<A>, b: Set<A>|
            (a.finite() && b.finite() && a.disjoint(b)) ==> #[trigger] (a + b).len() == a.len()
                + b.len(),  //from lemma_set_disjoint_lens
        forall|a: Set<A>, b: Set<A>|
            (a.finite() && b.finite()) ==> #[trigger] (a + b).len() + #[trigger] a.intersect(
                b,
            ).len() == a.len() + b.len(),  //from lemma_set_intersect_union_lens
        forall|a: Set<A>, b: Set<A>|
            (a.finite() && b.finite()) ==> ((#[trigger] a.difference(b).len() + b.difference(
                a,
            ).len() + a.intersect(b).len() == (a + b).len()) && (a.difference(b).len() == a.len()
                - a.intersect(b).len())),  //from lemma_set_difference_len
{
    assert forall|a: Set<A>, b: Set<A>| #[trigger] a.union(b).union(b) == a.union(b) by {
        lemma_set_union_again1(a, b);
    }
    assert forall|a: Set<A>, b: Set<A>| #[trigger] a.union(b).union(a) == a.union(b) by {
        lemma_set_union_again2(a, b);
    }
    assert forall|a: Set<A>, b: Set<A>| #[trigger]
        (a.intersect(b)).intersect(b) == a.intersect(b) by {
        lemma_set_intersect_again1(a, b);
    }
    assert forall|a: Set<A>, b: Set<A>| #[trigger]
        (a.intersect(b)).intersect(a) == a.intersect(b) by {
        lemma_set_intersect_again2(a, b);
    }
    assert forall|a: Set<A>, b: Set<A>| a.disjoint(b) implies ((#[trigger] (a + b)).difference(a)
        == b && (a + b).difference(b) == a) by {
        lemma_set_disjoint(a, b);
    }
    assert forall|s: Set<A>| #[trigger] s.len() != 0 && s.finite() implies exists|a: A|
        s.contains(a) by {
        assert(s.contains(s.choose()));
    }
    assert forall|a: Set<A>, b: Set<A>|
        a.disjoint(b) && b.finite() && a.finite() implies #[trigger] (a + b).len() == a.len()
        + b.len() by {
        lemma_set_disjoint_lens(a, b);
    }
    assert forall|a: Set<A>, b: Set<A>| a.finite() && b.finite() implies #[trigger] (a + b).len()
        + #[trigger] a.intersect(b).len() == a.len() + b.len() by {
        lemma_set_intersect_union_lens(a, b);
    }
    assert forall|a: Set<A>, b: Set<A>|
        (a.finite() && b.finite()) ==> #[trigger] a.difference(b).len() + b.difference(a).len()
            + a.intersect(b).len() == (a + b).len() by {
        if a.finite() && b.finite() {
            lemma_set_difference_len(a, b);
        }
    }
    assert forall|a: Set<A>, b: Set<A>|
        (a.finite() && b.finite()) ==> #[trigger] a.difference(b).len() == a.len() - a.intersect(
            b,
        ).len() by {
        if a.finite() && b.finite() {
            lemma_set_difference_len(a, b);
        }
    }
}

pub broadcast proof fn axiom_is_empty<A>(s: Set<A>)
    requires
        s.finite(),
        !(#[trigger] s.is_empty()),
    ensures
        exists|a: A| s.contains(a),
{
    admit();  // REVIEW, should this be in `set`, or have a proof?
}

#[doc(hidden)]
#[verifier::inline]
pub open spec fn check_argument_is_set<A>(s: Set<A>) -> Set<A> {
    s
}

/// Prove two sets equal by extensionality. Usage is:
///
/// ```rust
/// assert_sets_equal!(set1 == set2);
/// ```
///
/// or,
///
/// ```rust
/// assert_sets_equal!(set1 == set2, elem => {
///     // prove that set1.contains(elem) iff set2.contains(elem)
/// });
/// ```
#[macro_export]
macro_rules! assert_sets_equal {
    [$($tail:tt)*] => {
        ::builtin_macros::verus_proof_macro_exprs!($crate::vstd::set_lib::assert_sets_equal_internal!($($tail)*))
    };
}

#[macro_export]
#[doc(hidden)]
macro_rules! assert_sets_equal_internal {
    (::builtin::spec_eq($s1:expr, $s2:expr)) => {
        $crate::vstd::set_lib::assert_sets_equal_internal!($s1, $s2)
    };
    (::builtin::spec_eq($s1:expr, $s2:expr), $elem:ident $( : $t:ty )? => $bblock:block) => {
        $crate::vstd::set_lib::assert_sets_equal_internal!($s1, $s2, $elem $( : $t )? => $bblock)
    };
    (crate::builtin::spec_eq($s1:expr, $s2:expr)) => {
        $crate::vstd::set_lib::assert_sets_equal_internal!($s1, $s2)
    };
    (crate::builtin::spec_eq($s1:expr, $s2:expr), $elem:ident $( : $t:ty )? => $bblock:block) => {
        $crate::vstd::set_lib::assert_sets_equal_internal!($s1, $s2, $elem $( : $t )? => $bblock)
    };
    ($s1:expr, $s2:expr $(,)?) => {
        $crate::vstd::set_lib::assert_sets_equal_internal!($s1, $s2, elem => { })
    };
    ($s1:expr, $s2:expr, $elem:ident $( : $t:ty )? => $bblock:block) => {
        #[verifier::spec] let s1 = $crate::vstd::set_lib::check_argument_is_set($s1);
        #[verifier::spec] let s2 = $crate::vstd::set_lib::check_argument_is_set($s2);
        $crate::vstd::prelude::assert_by($crate::vstd::prelude::equal(s1, s2), {
            $crate::vstd::prelude::assert_forall_by(|$elem $( : $t )?| {
                $crate::vstd::prelude::ensures(
                    $crate::vstd::prelude::imply(s1.contains($elem), s2.contains($elem))
                    &&
                    $crate::vstd::prelude::imply(s2.contains($elem), s1.contains($elem))
                );
                { $bblock }
            });
            $crate::vstd::prelude::assert_($crate::vstd::prelude::ext_equal(s1, s2));
        });
    }
}

pub broadcast group group_set_lib_axioms {
    axiom_is_empty,
}

pub use assert_sets_equal_internal;
pub use assert_sets_equal;

} // verus!