#[allow(unused_imports)]
use super::multiset::Multiset;
#[allow(unused_imports)]
use super::pervasive::*;
use super::prelude::Seq;
#[allow(unused_imports)]
use super::prelude::*;
#[allow(unused_imports)]
use super::relations::*;
#[allow(unused_imports)]
use super::set::*;
verus! {
broadcast use super::set::group_set_axioms;
impl<A> Set<A> {
pub open spec fn is_full(self) -> bool {
self == Set::<A>::full()
}
pub open spec fn is_empty(self) -> (b: bool) {
self =~= Set::<A>::empty()
}
pub open spec fn map<B>(self, f: spec_fn(A) -> B) -> Set<B> {
Set::new(|a: B| exists|x: A| self.contains(x) && a == f(x))
}
pub open spec fn to_seq(self) -> Seq<A>
recommends
self.finite(),
decreases self.len(),
when self.finite()
{
if self.len() == 0 {
Seq::<A>::empty()
} else {
let x = self.choose();
Seq::<A>::empty().push(x) + self.remove(x).to_seq()
}
}
pub open spec fn to_sorted_seq(self, leq: spec_fn(A, A) -> bool) -> Seq<A> {
self.to_seq().sort_by(leq)
}
pub open spec fn is_singleton(self) -> bool {
&&& self.len() > 0
&&& (forall|x: A, y: A| self.contains(x) && self.contains(y) ==> x == y)
}
pub closed spec fn find_unique_minimal(self, r: spec_fn(A, A) -> bool) -> A
recommends
total_ordering(r),
self.len() > 0,
self.finite(),
decreases self.len(),
when self.finite()
{
proof {
broadcast use group_set_properties;
}
if self.len() <= 1 {
self.choose()
} else {
let x = choose|x: A| self.contains(x);
let min = self.remove(x).find_unique_minimal(r);
if r(min, x) {
min
} else {
x
}
}
}
pub proof fn find_unique_minimal_ensures(self, r: spec_fn(A, A) -> bool)
requires
self.finite(),
self.len() > 0,
total_ordering(r),
ensures
is_minimal(r, self.find_unique_minimal(r), self) && (forall|min: A|
is_minimal(r, min, self) ==> self.find_unique_minimal(r) == min),
decreases self.len(),
{
broadcast use group_set_properties;
if self.len() == 1 {
let x = choose|x: A| self.contains(x);
assert(self.remove(x).insert(x) =~= self);
assert(is_minimal(r, self.find_unique_minimal(r), self));
} else {
let x = choose|x: A| self.contains(x);
self.remove(x).find_unique_minimal_ensures(r);
assert(is_minimal(r, self.remove(x).find_unique_minimal(r), self.remove(x)));
let y = self.remove(x).find_unique_minimal(r);
let min_updated = self.find_unique_minimal(r);
assert(!r(y, x) ==> min_updated == x);
assert(forall|elt: A|
self.remove(x).contains(elt) && #[trigger] r(elt, y) ==> #[trigger] r(y, elt));
assert forall|elt: A|
self.contains(elt) && #[trigger] r(elt, min_updated) implies #[trigger] r(
min_updated,
elt,
) by {
assert(r(min_updated, x) || r(min_updated, y));
if min_updated == y { assert(is_minimal(r, self.find_unique_minimal(r), self));
} else { assert(self.remove(x).contains(elt) || elt == x);
assert(min_updated == x);
assert(r(x, y) || r(y, x));
assert(!r(x, y) || !r(y, x));
assert(!(min_updated == y) ==> !r(y, x));
assert(r(x, y));
if (self.remove(x).contains(elt)) {
assert(r(elt, y) && r(y, elt) ==> elt == y);
} else {
}
}
}
assert forall|min_poss: A|
is_minimal(r, min_poss, self) implies self.find_unique_minimal(r) == min_poss by {
assert(is_minimal(r, min_poss, self.remove(x)) || x == min_poss);
assert(r(min_poss, self.find_unique_minimal(r)));
}
}
}
pub closed spec fn find_unique_maximal(self, r: spec_fn(A, A) -> bool) -> A
recommends
total_ordering(r),
self.len() > 0,
decreases self.len(),
when self.finite()
{
proof {
broadcast use group_set_properties;
}
if self.len() <= 1 {
self.choose()
} else {
let x = choose|x: A| self.contains(x);
let max = self.remove(x).find_unique_maximal(r);
if r(x, max) {
max
} else {
x
}
}
}
pub proof fn find_unique_maximal_ensures(self, r: spec_fn(A, A) -> bool)
requires
self.finite(),
self.len() > 0,
total_ordering(r),
ensures
is_maximal(r, self.find_unique_maximal(r), self) && (forall|max: A|
is_maximal(r, max, self) ==> self.find_unique_maximal(r) == max),
decreases self.len(),
{
broadcast use group_set_properties;
if self.len() == 1 {
let x = choose|x: A| self.contains(x);
assert(self.remove(x) =~= Set::<A>::empty());
assert(self.contains(self.find_unique_maximal(r)));
} else {
let x = choose|x: A| self.contains(x);
self.remove(x).find_unique_maximal_ensures(r);
assert(is_maximal(r, self.remove(x).find_unique_maximal(r), self.remove(x)));
assert(self.remove(x).insert(x) =~= self);
let y = self.remove(x).find_unique_maximal(r);
let max_updated = self.find_unique_maximal(r);
assert(max_updated == x || max_updated == y);
assert(!r(x, y) ==> max_updated == x);
assert forall|elt: A|
self.contains(elt) && #[trigger] r(max_updated, elt) implies #[trigger] r(
elt,
max_updated,
) by {
assert(r(x, max_updated) || r(y, max_updated));
if max_updated == y { assert(r(elt, max_updated));
assert(r(x, max_updated));
assert(is_maximal(r, self.find_unique_maximal(r), self));
} else { assert(self.remove(x).contains(elt) || elt == x);
assert(max_updated == x);
assert(r(x, y) || r(y, x));
assert(!r(x, y) || !r(y, x));
assert(!(max_updated == y) ==> !r(x, y));
assert(r(y, x));
if (self.remove(x).contains(elt)) {
assert(r(y, elt) ==> r(elt, y));
assert(r(y, elt) && r(elt, y) ==> elt == y);
assert(r(elt, x));
assert(r(elt, max_updated))
} else {
}
}
}
assert forall|max_poss: A|
is_maximal(r, max_poss, self) implies self.find_unique_maximal(r) == max_poss by {
assert(is_maximal(r, max_poss, self.remove(x)) || x == max_poss);
assert(r(max_poss, self.find_unique_maximal(r)));
assert(r(self.find_unique_maximal(r), max_poss));
}
}
}
pub open spec fn to_multiset(self) -> Multiset<A>
decreases self.len(),
when self.finite()
{
if self.len() == 0 {
Multiset::<A>::empty()
} else {
Multiset::<A>::empty().insert(self.choose()).add(
self.remove(self.choose()).to_multiset(),
)
}
}
pub proof fn lemma_len0_is_empty(self)
requires
self.finite(),
self.len() == 0,
ensures
self == Set::<A>::empty(),
{
if exists|a: A| self.contains(a) {
assert(self.remove(self.choose()).len() + 1 == 0);
}
assert(self =~= Set::empty());
}
pub proof fn lemma_singleton_size(self)
requires
self.is_singleton(),
ensures
self.len() == 1,
{
broadcast use group_set_properties;
assert(self.remove(self.choose()) =~= Set::empty());
}
pub proof fn lemma_is_singleton(s: Set<A>)
requires
s.finite(),
ensures
s.is_singleton() == (s.len() == 1),
{
if s.is_singleton() {
s.lemma_singleton_size();
}
if s.len() == 1 {
assert forall|x: A, y: A| s.contains(x) && s.contains(y) implies x == y by {
let x = choose|x: A| s.contains(x);
broadcast use group_set_properties;
assert(s.remove(x).len() == 0);
assert(s.insert(x) =~= s);
}
}
}
pub proof fn lemma_len_filter(self, f: spec_fn(A) -> bool)
requires
self.finite(),
ensures
self.filter(f).finite(),
self.filter(f).len() <= self.len(),
decreases self.len(),
{
lemma_len_intersect::<A>(self, Set::new(f));
}
pub proof fn lemma_greatest_implies_maximal(self, r: spec_fn(A, A) -> bool, max: A)
requires
pre_ordering(r),
ensures
is_greatest(r, max, self) ==> is_maximal(r, max, self),
{
}
pub proof fn lemma_least_implies_minimal(self, r: spec_fn(A, A) -> bool, min: A)
requires
pre_ordering(r),
ensures
is_least(r, min, self) ==> is_minimal(r, min, self),
{
}
pub proof fn lemma_maximal_equivalent_greatest(self, r: spec_fn(A, A) -> bool, max: A)
requires
total_ordering(r),
ensures
is_greatest(r, max, self) <==> is_maximal(r, max, self),
{
assert(is_maximal(r, max, self) ==> forall|x: A|
!self.contains(x) || !r(max, x) || r(x, max));
}
pub proof fn lemma_minimal_equivalent_least(self, r: spec_fn(A, A) -> bool, min: A)
requires
total_ordering(r),
ensures
is_least(r, min, self) <==> is_minimal(r, min, self),
{
assert(is_minimal(r, min, self) ==> forall|x: A|
!self.contains(x) || !r(x, min) || r(min, x));
}
pub proof fn lemma_least_is_unique(self, r: spec_fn(A, A) -> bool)
requires
partial_ordering(r),
ensures
forall|min: A, min_prime: A|
is_least(r, min, self) && is_least(r, min_prime, self) ==> min == min_prime,
{
assert forall|min: A, min_prime: A|
is_least(r, min, self) && is_least(r, min_prime, self) implies min == min_prime by {
assert(r(min, min_prime));
assert(r(min_prime, min));
}
}
pub proof fn lemma_greatest_is_unique(self, r: spec_fn(A, A) -> bool)
requires
partial_ordering(r),
ensures
forall|max: A, max_prime: A|
is_greatest(r, max, self) && is_greatest(r, max_prime, self) ==> max == max_prime,
{
assert forall|max: A, max_prime: A|
is_greatest(r, max, self) && is_greatest(r, max_prime, self) implies max
== max_prime by {
assert(r(max_prime, max));
assert(r(max, max_prime));
}
}
pub proof fn lemma_minimal_is_unique(self, r: spec_fn(A, A) -> bool)
requires
total_ordering(r),
ensures
forall|min: A, min_prime: A|
is_minimal(r, min, self) && is_minimal(r, min_prime, self) ==> min == min_prime,
{
assert forall|min: A, min_prime: A|
is_minimal(r, min, self) && is_minimal(r, min_prime, self) implies min == min_prime by {
self.lemma_minimal_equivalent_least(r, min);
self.lemma_minimal_equivalent_least(r, min_prime);
self.lemma_least_is_unique(r);
}
}
pub proof fn lemma_maximal_is_unique(self, r: spec_fn(A, A) -> bool)
requires
self.finite(),
total_ordering(r),
ensures
forall|max: A, max_prime: A|
is_maximal(r, max, self) && is_maximal(r, max_prime, self) ==> max == max_prime,
{
assert forall|max: A, max_prime: A|
is_maximal(r, max, self) && is_maximal(r, max_prime, self) implies max == max_prime by {
self.lemma_maximal_equivalent_greatest(r, max);
self.lemma_maximal_equivalent_greatest(r, max_prime);
self.lemma_greatest_is_unique(r);
}
}
pub broadcast proof fn lemma_set_insert_diff_decreases(self, s: Set<A>, elt: A)
requires
self.contains(elt),
!s.contains(elt),
self.finite(),
ensures
#[trigger] self.difference(s.insert(elt)).len() < self.difference(s).len(),
{
self.difference(s.insert(elt)).lemma_subset_not_in_lt(self.difference(s), elt);
}
pub proof fn lemma_subset_not_in_lt(self: Set<A>, s2: Set<A>, elt: A)
requires
self.subset_of(s2),
s2.finite(),
!self.contains(elt),
s2.contains(elt),
ensures
self.len() < s2.len(),
{
let s2_no_elt = s2.remove(elt);
assert(self.len() <= s2_no_elt.len()) by {
lemma_len_subset(self, s2_no_elt);
}
}
pub broadcast proof fn lemma_set_map_insert_commute<B>(self, elt: A, f: spec_fn(A) -> B)
ensures
#[trigger] self.insert(elt).map(f) =~= self.map(f).insert(f(elt)),
{
assert forall|x: B| self.map(f).insert(f(elt)).contains(x) implies self.insert(elt).map(
f,
).contains(x) by {
if x == f(elt) {
assert(self.insert(elt).contains(elt));
} else {
let y = choose|y: A| self.contains(y) && f(y) == x;
assert(self.insert(elt).contains(y));
}
}
}
pub proof fn lemma_map_union_commute<B>(self, t: Set<A>, f: spec_fn(A) -> B)
ensures
(self.union(t)).map(f) =~= self.map(f).union(t.map(f)),
{
broadcast use group_set_axioms;
let lhs = self.union(t).map(f);
let rhs = self.map(f).union(t.map(f));
assert forall|elem: B| rhs.contains(elem) implies lhs.contains(elem) by {
if self.map(f).contains(elem) {
let preimage = choose|preimage: A| self.contains(preimage) && f(preimage) == elem;
assert(self.union(t).contains(preimage));
} else {
assert(t.map(f).contains(elem));
let preimage = choose|preimage: A| t.contains(preimage) && f(preimage) == elem;
assert(self.union(t).contains(preimage));
}
}
}
pub open spec fn all(&self, pred: spec_fn(A) -> bool) -> bool {
forall|x: A| self.contains(x) ==> pred(x)
}
pub open spec fn any(&self, pred: spec_fn(A) -> bool) -> bool {
exists|x: A| self.contains(x) && pred(x)
}
pub broadcast proof fn lemma_any_map_preserved_pred<B>(
self,
p: spec_fn(A) -> bool,
q: spec_fn(B) -> bool,
f: spec_fn(A) -> B,
)
requires
#[trigger] self.any(p),
forall|x: A| #[trigger] p(x) ==> q(f(x)),
ensures
#[trigger] self.map(f).any(q),
{
let x = choose|x: A| self.contains(x) && p(x);
assert(self.map(f).contains(f(x)));
}
pub open spec fn filter_map<B>(self, f: spec_fn(A) -> Option<B>) -> Set<B> {
self.map(
|elem: A|
match f(elem) {
Option::Some(r) => set!{r},
Option::None => set!{},
},
).flatten()
}
pub broadcast proof fn lemma_filter_map_insert<B>(
s: Set<A>,
f: spec_fn(A) -> Option<B>,
elem: A,
)
ensures
#[trigger] s.insert(elem).filter_map(f) == (match f(elem) {
Some(res) => s.filter_map(f).insert(res),
None => s.filter_map(f),
}),
{
broadcast use group_set_axioms;
broadcast use Set::lemma_set_map_insert_commute;
let lhs = s.insert(elem).filter_map(f);
let rhs = match f(elem) {
Some(res) => s.filter_map(f).insert(res),
None => s.filter_map(f),
};
let to_set = |elem: A|
match f(elem) {
Option::Some(r) => set!{r},
Option::None => set!{},
};
assert forall|r: B| #[trigger] lhs.contains(r) implies rhs.contains(r) by {
if f(elem) != Some(r) {
let orig = choose|orig: A| #[trigger]
s.contains(orig) && f(orig) == Option::Some(r);
assert(to_set(orig) == set!{r});
assert(s.map(to_set).contains(to_set(orig)));
}
}
assert forall|r: B| #[trigger] rhs.contains(r) implies lhs.contains(r) by {
if Some(r) == f(elem) {
assert(s.insert(elem).map(to_set).contains(to_set(elem)));
} else {
let orig = choose|orig: A| #[trigger]
s.contains(orig) && f(orig) == Option::Some(r);
assert(s.insert(elem).map(to_set).contains(to_set(orig)));
}
}
assert(lhs =~= rhs);
}
pub broadcast proof fn lemma_filter_map_union<B>(self, f: spec_fn(A) -> Option<B>, t: Set<A>)
ensures
#[trigger] self.union(t).filter_map(f) == self.filter_map(f).union(t.filter_map(f)),
{
broadcast use group_set_axioms;
let lhs = self.union(t).filter_map(f);
let rhs = self.filter_map(f).union(t.filter_map(f));
let to_set = |elem: A|
match f(elem) {
Option::Some(r) => set!{r},
Option::None => set!{},
};
assert forall|elem: B| rhs.contains(elem) implies lhs.contains(elem) by {
if self.filter_map(f).contains(elem) {
let x = choose|x: A| self.contains(x) && f(x) == Option::Some(elem);
assert(self.union(t).contains(x));
assert(self.union(t).map(to_set).contains(to_set(x)));
}
if t.filter_map(f).contains(elem) {
let x = choose|x: A| t.contains(x) && f(x) == Option::Some(elem);
assert(self.union(t).contains(x));
assert(self.union(t).map(to_set).contains(to_set(x)));
}
}
assert forall|elem: B| lhs.contains(elem) implies rhs.contains(elem) by {
let x = choose|x: A| self.union(t).contains(x) && f(x) == Option::Some(elem);
if self.contains(x) {
assert(self.map(to_set).contains(to_set(x)));
assert(self.filter_map(f).contains(elem));
} else {
assert(t.contains(x));
assert(t.map(to_set).contains(to_set(x)));
assert(t.filter_map(f).contains(elem));
}
}
assert(lhs =~= rhs);
}
pub proof fn lemma_map_finite<B>(self, f: spec_fn(A) -> B)
requires
self.finite(),
ensures
self.map(f).finite(),
decreases self.len(),
{
broadcast use group_set_axioms;
broadcast use lemma_set_empty_equivalency_len;
if self.len() == 0 {
assert(forall|elem: A| !(#[trigger] self.contains(elem)));
assert forall|res: B| #[trigger] self.map(f).contains(res) implies false by {
let x = choose|x: A| self.contains(x) && f(x) == res;
}
assert(self.map(f) =~= Set::<B>::empty());
} else {
let x = choose|x: A| self.contains(x);
assert(self.map(f).contains(f(x)));
self.remove(x).lemma_map_finite(f);
assert(self.remove(x).insert(x) == self);
assert(self.map(f) == self.remove(x).map(f).insert(f(x)));
}
}
pub broadcast proof fn lemma_set_all_subset(self, s2: Set<A>, p: spec_fn(A) -> bool)
requires
#[trigger] self.subset_of(s2),
s2.all(p),
ensures
#[trigger] self.all(p),
{
broadcast use group_set_axioms;
}
pub broadcast proof fn lemma_filter_map_finite<B>(self, f: spec_fn(A) -> Option<B>)
requires
self.finite(),
ensures
#[trigger] self.filter_map(f).finite(),
decreases self.len(),
{
broadcast use group_set_axioms;
broadcast use Set::lemma_filter_map_insert;
let mapped = self.filter_map(f);
if self.len() == 0 {
assert(self.filter_map(f) =~= Set::<B>::empty());
} else {
let elem = self.choose();
self.remove(elem).lemma_filter_map_finite(f);
assert(self =~= self.remove(elem).insert(elem));
}
}
pub broadcast proof fn lemma_to_seq_to_set_id(self)
requires
self.finite(),
ensures
#[trigger] self.to_seq().to_set() =~= self,
decreases self.len(),
{
broadcast use group_set_axioms;
broadcast use lemma_set_empty_equivalency_len;
broadcast use super::seq_lib::group_seq_properties;
if self.len() == 0 {
assert(self.to_seq().to_set() =~= Set::<A>::empty());
} else {
let elem = self.choose();
self.remove(elem).lemma_to_seq_to_set_id();
assert(self =~= self.remove(elem).insert(elem));
assert(self.to_seq().to_set() =~= self.remove(elem).to_seq().to_set().insert(elem));
}
}
}
impl<A> Set<Set<A>> {
pub open spec fn flatten(self) -> Set<A> {
Set::new(
|elem| exists|elem_s: Set<A>| #[trigger] self.contains(elem_s) && elem_s.contains(elem),
)
}
pub broadcast proof fn flatten_insert_union_commute(self, other: Set<A>)
ensures
self.flatten().union(other) =~= #[trigger] self.insert(other).flatten(),
{
broadcast use group_set_axioms;
let lhs = self.flatten().union(other);
let rhs = self.insert(other).flatten();
assert forall|elem: A| lhs.contains(elem) implies rhs.contains(elem) by {
if exists|s: Set<A>| self.contains(s) && s.contains(elem) {
let s = choose|s: Set<A>| self.contains(s) && s.contains(elem);
assert(self.insert(other).contains(s));
assert(s.contains(elem));
} else {
assert(self.insert(other).contains(other));
}
}
}
}
pub proof fn lemma_sets_eq_iff_injective_map_eq<T, S>(s1: Set<T>, s2: Set<T>, f: spec_fn(T) -> S)
requires
super::relations::injective(f),
ensures
(s1 == s2) <==> (s1.map(f) == s2.map(f)),
{
broadcast use group_set_axioms;
if (s1.map(f) == s2.map(f)) {
assert(s1.map(f).len() == s2.map(f).len());
if !s1.subset_of(s2) {
let x = choose|x: T| s1.contains(x) && !s2.contains(x);
assert(s1.map(f).contains(f(x)));
} else if !s2.subset_of(s1) {
let x = choose|x: T| s2.contains(x) && !s1.contains(x);
assert(s2.map(f).contains(f(x)));
}
assert(s1 =~= s2);
}
}
pub broadcast proof fn lemma_set_insert_finite_iff<A>(s: Set<A>, a: A)
ensures
#[trigger] s.insert(a).finite() <==> s.finite(),
{
if s.insert(a).finite() {
if s.contains(a) {
assert(s == s.insert(a));
} else {
assert(s == s.insert(a).remove(a));
}
}
assert(s.insert(a).finite() ==> s.finite());
}
pub broadcast proof fn lemma_set_remove_finite_iff<A>(s: Set<A>, a: A)
ensures
#[trigger] s.remove(a).finite() <==> s.finite(),
{
if s.remove(a).finite() {
if s.contains(a) {
assert(s == s.remove(a).insert(a));
} else {
assert(s == s.remove(a));
}
}
}
pub broadcast proof fn lemma_set_union_finite_iff<A>(s1: Set<A>, s2: Set<A>)
ensures
#[trigger] s1.union(s2).finite() <==> s1.finite() && s2.finite(),
{
if s1.union(s2).finite() {
lemma_set_union_finite_implies_sets_finite(s1, s2);
}
}
pub proof fn lemma_set_union_finite_implies_sets_finite<A>(s1: Set<A>, s2: Set<A>)
requires
s1.union(s2).finite(),
ensures
s1.finite(),
s2.finite(),
decreases s1.union(s2).len(),
{
if s1.union(s2) =~= set![] {
assert(s1 =~= set![]);
assert(s2 =~= set![]);
} else {
let a = s1.union(s2).choose();
assert(s1.remove(a).union(s2.remove(a)) == s1.union(s2).remove(a));
axiom_set_remove_len(s1.union(s2), a);
lemma_set_union_finite_implies_sets_finite(s1.remove(a), s2.remove(a));
assert(forall|s: Set<A>|
#![auto]
s.remove(a).insert(a) == if s.contains(a) {
s
} else {
s.insert(a)
});
lemma_set_insert_finite_iff(s1, a);
lemma_set_insert_finite_iff(s2, a);
}
}
pub proof fn lemma_len_union<A>(s1: Set<A>, s2: Set<A>)
requires
s1.finite(),
s2.finite(),
ensures
s1.union(s2).len() <= s1.len() + s2.len(),
decreases s1.len(),
{
if s1.is_empty() {
assert(s1.union(s2) =~= s2);
} else {
let a = s1.choose();
if s2.contains(a) {
assert(s1.union(s2) =~= s1.remove(a).union(s2));
} else {
assert(s1.union(s2).remove(a) =~= s1.remove(a).union(s2));
}
lemma_len_union::<A>(s1.remove(a), s2);
}
}
pub proof fn lemma_len_union_ind<A>(s1: Set<A>, s2: Set<A>)
requires
s1.finite(),
s2.finite(),
ensures
s1.union(s2).len() >= s1.len(),
s1.union(s2).len() >= s2.len(),
decreases s2.len(),
{
broadcast use group_set_properties;
if s2.len() == 0 {
} else {
let y = choose|y: A| s2.contains(y);
if s1.contains(y) {
assert(s1.remove(y).union(s2.remove(y)) =~= s1.union(s2).remove(y));
lemma_len_union_ind(s1.remove(y), s2.remove(y))
} else {
assert(s1.union(s2.remove(y)) =~= s1.union(s2).remove(y));
lemma_len_union_ind(s1, s2.remove(y))
}
}
}
pub proof fn lemma_len_intersect<A>(s1: Set<A>, s2: Set<A>)
requires
s1.finite(),
ensures
s1.intersect(s2).len() <= s1.len(),
decreases s1.len(),
{
if s1.is_empty() {
assert(s1.intersect(s2) =~= s1);
} else {
let a = s1.choose();
assert(s1.intersect(s2).remove(a) =~= s1.remove(a).intersect(s2));
lemma_len_intersect::<A>(s1.remove(a), s2);
}
}
pub proof fn lemma_len_subset<A>(s1: Set<A>, s2: Set<A>)
requires
s2.finite(),
s1.subset_of(s2),
ensures
s1.len() <= s2.len(),
s1.finite(),
{
lemma_len_intersect::<A>(s2, s1);
assert(s2.intersect(s1) =~= s1);
}
pub broadcast proof fn lemma_set_subset_finite<A>(s: Set<A>, sub: Set<A>)
requires
s.finite(),
sub.subset_of(s),
ensures
#![trigger sub.subset_of(s)]
sub.finite(),
{
let complement = s.difference(sub);
assert(sub =~= s.difference(complement));
}
pub proof fn lemma_len_difference<A>(s1: Set<A>, s2: Set<A>)
requires
s1.finite(),
ensures
s1.difference(s2).len() <= s1.len(),
decreases s1.len(),
{
if s1.is_empty() {
assert(s1.difference(s2) =~= s1);
} else {
let a = s1.choose();
assert(s1.difference(s2).remove(a) =~= s1.remove(a).difference(s2));
lemma_len_difference::<A>(s1.remove(a), s2);
}
}
pub open spec fn set_int_range(lo: int, hi: int) -> Set<int> {
Set::new(|i: int| lo <= i && i < hi)
}
pub proof fn lemma_int_range(lo: int, hi: int)
requires
lo <= hi,
ensures
set_int_range(lo, hi).finite(),
set_int_range(lo, hi).len() == hi - lo,
decreases hi - lo,
{
if lo == hi {
assert(set_int_range(lo, hi) =~= Set::empty());
} else {
lemma_int_range(lo, hi - 1);
assert(set_int_range(lo, hi - 1).insert(hi - 1) =~= set_int_range(lo, hi));
}
}
pub proof fn lemma_subset_equality<A>(x: Set<A>, y: Set<A>)
requires
x.subset_of(y),
x.finite(),
y.finite(),
x.len() == y.len(),
ensures
x =~= y,
decreases x.len(),
{
broadcast use group_set_properties;
if x =~= Set::<A>::empty() {
} else {
let e = x.choose();
lemma_subset_equality(x.remove(e), y.remove(e));
}
}
pub proof fn lemma_map_size<A, B>(x: Set<A>, y: Set<B>, f: spec_fn(A) -> B)
requires
injective(f),
forall|a: A| x.contains(a) ==> y.contains(#[trigger] f(a)),
forall|b: B| (#[trigger] y.contains(b)) ==> exists|a: A| x.contains(a) && f(a) == b,
x.finite(),
y.finite(),
ensures
x.len() == y.len(),
decreases x.len(),
{
broadcast use group_set_properties;
if x.len() != 0 {
let a = x.choose();
lemma_map_size(x.remove(a), y.remove(f(a)), f);
}
}
pub broadcast proof fn lemma_set_union_again1<A>(a: Set<A>, b: Set<A>)
ensures
#[trigger] a.union(b).union(b) =~= a.union(b),
{
}
pub broadcast proof fn lemma_set_union_again2<A>(a: Set<A>, b: Set<A>)
ensures
#[trigger] a.union(b).union(a) =~= a.union(b),
{
}
pub broadcast proof fn lemma_set_intersect_again1<A>(a: Set<A>, b: Set<A>)
ensures
#![trigger (a.intersect(b)).intersect(b)]
(a.intersect(b)).intersect(b) =~= a.intersect(b),
{
}
pub broadcast proof fn lemma_set_intersect_again2<A>(a: Set<A>, b: Set<A>)
ensures
#![trigger (a.intersect(b)).intersect(a)]
(a.intersect(b)).intersect(a) =~= a.intersect(b),
{
}
pub broadcast proof fn lemma_set_difference2<A>(s1: Set<A>, s2: Set<A>, a: A)
ensures
#![trigger s1.difference(s2).contains(a)]
s2.contains(a) ==> !s1.difference(s2).contains(a),
{
}
pub broadcast proof fn lemma_set_disjoint<A>(a: Set<A>, b: Set<A>)
ensures
#![trigger (a + b).difference(a)] a.disjoint(b) ==> ((a + b).difference(a) =~= b && (a + b).difference(b) =~= a),
{
}
pub broadcast proof fn lemma_set_empty_equivalency_len<A>(s: Set<A>)
requires
s.finite(),
ensures
#![trigger s.len()]
(s.len() == 0 <==> s == Set::<A>::empty()) && (s.len() != 0 ==> exists|x: A| s.contains(x)),
{
assert(s.len() == 0 ==> s =~= Set::empty()) by {
if s.len() == 0 {
assert(forall|a: A| !(Set::empty().contains(a)));
assert(Set::<A>::empty().len() == 0);
assert(Set::<A>::empty().len() == s.len());
assert((exists|a: A| s.contains(a)) || (forall|a: A| !s.contains(a)));
if exists|a: A| s.contains(a) {
let a = s.choose();
assert(s.remove(a).len() == s.len() - 1) by {
axiom_set_remove_len(s, a);
}
}
}
}
assert(s.len() == 0 <== s =~= Set::empty());
}
pub broadcast proof fn lemma_set_disjoint_lens<A>(a: Set<A>, b: Set<A>)
requires
a.finite(),
b.finite(),
ensures
a.disjoint(b) ==> #[trigger] (a + b).len() == a.len() + b.len(),
decreases a.len(),
{
if a.len() == 0 {
lemma_set_empty_equivalency_len(a);
assert(a + b =~= b);
} else {
if a.disjoint(b) {
let x = a.choose();
assert(a.remove(x) + b =~= (a + b).remove(x));
lemma_set_disjoint_lens(a.remove(x), b);
}
}
}
pub broadcast proof fn lemma_set_intersect_union_lens<A>(a: Set<A>, b: Set<A>)
requires
a.finite(),
b.finite(),
ensures
#[trigger] (a + b).len() + #[trigger] a.intersect(b).len() == a.len() + b.len(),
decreases a.len(),
{
if a.len() == 0 {
lemma_set_empty_equivalency_len(a);
assert(a + b =~= b);
assert(a.intersect(b) =~= Set::empty());
assert(a.intersect(b).len() == 0);
} else {
let x = a.choose();
lemma_set_intersect_union_lens(a.remove(x), b);
if (b.contains(x)) {
assert(a.remove(x) + b =~= (a + b));
assert(a.intersect(b).remove(x) =~= a.remove(x).intersect(b));
} else {
assert(a.remove(x) + b =~= (a + b).remove(x));
assert(a.remove(x).intersect(b) =~= a.intersect(b));
}
}
}
pub broadcast proof fn lemma_set_difference_len<A>(a: Set<A>, b: Set<A>)
requires
a.finite(),
b.finite(),
ensures
(#[trigger] a.difference(b).len() + b.difference(a).len() + a.intersect(b).len() == (a
+ b).len()) && (a.difference(b).len() == a.len() - a.intersect(b).len()),
decreases a.len(),
{
if a.len() == 0 {
lemma_set_empty_equivalency_len(a);
assert(a.difference(b) =~= Set::empty());
assert(b.difference(a) =~= b);
assert(a.intersect(b) =~= Set::empty());
assert(a + b =~= b);
} else {
let x = a.choose();
lemma_set_difference_len(a.remove(x), b);
if b.contains(x) {
assert(a.intersect(b).remove(x) =~= a.remove(x).intersect(b));
assert(a.remove(x).difference(b) =~= a.difference(b));
assert(b.difference(a.remove(x)).remove(x) =~= b.difference(a));
assert(a.remove(x) + b =~= a + b);
} else {
assert(a.remove(x) + b =~= (a + b).remove(x));
assert(a.remove(x).difference(b) =~= a.difference(b).remove(x));
assert(b.difference(a.remove(x)) =~= b.difference(a));
assert(a.remove(x).intersect(b) =~= a.intersect(b));
}
}
}
#[deprecated = "Use `broadcast use group_set_properties` instead"]
pub proof fn lemma_set_properties<A>()
ensures
forall|a: Set<A>, b: Set<A>| #[trigger] a.union(b).union(b) == a.union(b), forall|a: Set<A>, b: Set<A>| #[trigger] a.union(b).union(a) == a.union(b), forall|a: Set<A>, b: Set<A>| #[trigger] (a.intersect(b)).intersect(b) == a.intersect(b), forall|a: Set<A>, b: Set<A>| #[trigger] (a.intersect(b)).intersect(a) == a.intersect(b), forall|s1: Set<A>, s2: Set<A>, a: A| s2.contains(a) ==> !s1.difference(s2).contains(a), forall|a: Set<A>, b: Set<A>|
#![trigger (a + b).difference(a)]
a.disjoint(b) ==> ((a + b).difference(a) =~= b && (a + b).difference(b) =~= a), forall|s: Set<A>| #[trigger] s.len() != 0 && s.finite() ==> exists|a: A| s.contains(a), forall|a: Set<A>, b: Set<A>|
(a.finite() && b.finite() && a.disjoint(b)) ==> #[trigger] (a + b).len() == a.len()
+ b.len(), forall|a: Set<A>, b: Set<A>|
(a.finite() && b.finite()) ==> #[trigger] (a + b).len() + #[trigger] a.intersect(
b,
).len() == a.len() + b.len(), forall|a: Set<A>, b: Set<A>|
(a.finite() && b.finite()) ==> ((#[trigger] a.difference(b).len() + b.difference(
a,
).len() + a.intersect(b).len() == (a + b).len()) && (a.difference(b).len() == a.len()
- a.intersect(b).len())), {
broadcast use group_set_properties;
assert forall|s: Set<A>| #[trigger] s.len() != 0 && s.finite() implies exists|a: A|
s.contains(a) by {
assert(s.contains(s.choose()));
}
}
pub broadcast group group_set_properties {
lemma_set_union_again1,
lemma_set_union_again2,
lemma_set_intersect_again1,
lemma_set_intersect_again2,
lemma_set_difference2,
lemma_set_disjoint,
lemma_set_disjoint_lens,
lemma_set_intersect_union_lens,
lemma_set_difference_len,
lemma_set_empty_equivalency_len,
}
pub broadcast proof fn axiom_is_empty<A>(s: Set<A>)
requires
!(#[trigger] s.is_empty()),
ensures
exists|a: A| s.contains(a),
{
admit(); }
pub broadcast proof fn axiom_is_empty_len0<A>(s: Set<A>)
ensures
#[trigger] s.is_empty() <==> (s.finite() && s.len() == 0),
{
}
#[doc(hidden)]
#[verifier::inline]
pub open spec fn check_argument_is_set<A>(s: Set<A>) -> Set<A> {
s
}
#[macro_export]
macro_rules! assert_sets_equal {
[$($tail:tt)*] => {
::builtin_macros::verus_proof_macro_exprs!($crate::vstd::set_lib::assert_sets_equal_internal!($($tail)*))
};
}
#[macro_export]
#[doc(hidden)]
macro_rules! assert_sets_equal_internal {
(::builtin::spec_eq($s1:expr, $s2:expr)) => {
$crate::vstd::set_lib::assert_sets_equal_internal!($s1, $s2)
};
(::builtin::spec_eq($s1:expr, $s2:expr), $elem:ident $( : $t:ty )? => $bblock:block) => {
$crate::vstd::set_lib::assert_sets_equal_internal!($s1, $s2, $elem $( : $t )? => $bblock)
};
(crate::builtin::spec_eq($s1:expr, $s2:expr)) => {
$crate::vstd::set_lib::assert_sets_equal_internal!($s1, $s2)
};
(crate::builtin::spec_eq($s1:expr, $s2:expr), $elem:ident $( : $t:ty )? => $bblock:block) => {
$crate::vstd::set_lib::assert_sets_equal_internal!($s1, $s2, $elem $( : $t )? => $bblock)
};
($s1:expr, $s2:expr $(,)?) => {
$crate::vstd::set_lib::assert_sets_equal_internal!($s1, $s2, elem => { })
};
($s1:expr, $s2:expr, $elem:ident $( : $t:ty )? => $bblock:block) => {
#[verifier::spec] let s1 = $crate::vstd::set_lib::check_argument_is_set($s1);
#[verifier::spec] let s2 = $crate::vstd::set_lib::check_argument_is_set($s2);
$crate::vstd::prelude::assert_by($crate::vstd::prelude::equal(s1, s2), {
$crate::vstd::prelude::assert_forall_by(|$elem $( : $t )?| {
$crate::vstd::prelude::ensures(
$crate::vstd::prelude::imply(s1.contains($elem), s2.contains($elem))
&&
$crate::vstd::prelude::imply(s2.contains($elem), s1.contains($elem))
);
{ $bblock }
});
$crate::vstd::prelude::assert_($crate::vstd::prelude::ext_equal(s1, s2));
});
}
}
pub broadcast group group_set_lib_default {
axiom_is_empty,
axiom_is_empty_len0,
lemma_set_subset_finite,
}
pub use assert_sets_equal_internal;
pub use assert_sets_equal;
}