1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
/// This file defines structs `CheckedU8`, `CheckedU16`, etc. and
/// their associated methods to handle `u8`, `u16`, etc. values that
/// can overflow. Each struct includes a ghost value representing the
/// true value (not subject to overflow), so that the `view` function
/// can provide the true value.
///
/// It's a fully verified library, i.e., it contains no trusted code.
///
/// Here are some examples using `CheckedU64`. (See
/// `rust_verify/example/overflow.rs` for more examples, including
/// ones for the analogous `CheckedU32`.)
///
/// ```
/// fn test1()
/// {
///     let w = CheckedU64::new(0xFFFFFFFFFFFFFFFF);
///     let x = w.add_value(1);
///     assert(x.is_overflowed());
///     assert(x.view() == 0x10000000000000000);
///
///     let y = CheckedU64::new(0x8000000000000000);
///     let z = y.mul_value(2);
///     assert(z.is_overflowed());
///     assert(z.view() == 0x10000000000000000);
/// }
///
/// fn test2(a: u64, b: u64, c: u64, d: u64) -> (e: Option<u64>)
///     ensures
///         match e {
///             Some(v) => v == a * b + c * d,
///             None => a * b + c * d > u64::MAX,
///         }
/// {
///     let a_times_b = CheckedU64::new(a).mul_value(b);
///     let c_times_d = CheckedU64::new(c).mul_value(d);
///     let sum_of_products = a_times_b.add_checked(&c_times_d);
///     if sum_of_products.is_overflowed() {
///         assert(a * b + c * d > u64::MAX);
///         None
///     }
///     else {
///         let i: u64 = sum_of_products.unwrap();
///         assert(i == a * b + c * d);
///         Some(i)
///     }
/// }
/// ```
#[allow(unused_imports)]
use super::super::prelude::*;
#[allow(unused_imports)]
use super::super::view::View;
#[allow(unused_imports)]
#[cfg(verus_keep_ghost)]
use super::mul::{lemma_mul_by_zero_is_zero, lemma_mul_inequality, lemma_mul_is_commutative};
#[allow(unused_imports)]
use super::*;
macro_rules! checked_uint_gen {
    // This macro should be instantiated with the following parameters:
    //
    // $uty - The name of the `std` unsigned integer, e.g., `u64`
    // $cty - The name of the checked struct to create, e.g., `CheckedU64`
    ($uty: ty, $cty: ty) => {
        verus! {

            /// This struct represents a `$uty` value that can overflow. The `i` field
            /// is a ghost value that represents the true value, while the `v` field
            /// is `None` when the value has overflowed and `Some(x)` when the value
            /// `x` fits in a `$uty`.
            pub struct $cty {
                i: Ghost<nat>,
                v: Option<$uty>,
            }

            /// The view of an `$cty` instance is the true value of the instance.
            impl View for $cty
            {
                type V = nat;

                closed spec fn view(&self) -> nat
                {
                    self.i@
                }
            }

            impl Clone for $cty {
                /// Clones the `$cty` instance.
                /// Ensures the cloned instance has the same value as the original.
                exec fn clone(&self) -> (result: Self)
                    ensures
                        result@ == self@
                {
                    proof { use_type_invariant(self); }
                    Self{ i: self.i, v: self.v }
                }
            }

            impl $cty {
                /// This is the internal type invariant for an `$cty`.
                /// It ensures the key invariant that relates `i` and `v`.
                #[verifier::type_invariant]
                spec fn well_formed(self) -> bool
                {
                    match self.v {
                        Some(v) => self.i@ == v,
                        None => self.i@ > $uty::MAX,
                    }
                }

                /// Creates a new `$cty` instance from a `$uty` value.
                /// Ensures the internal representation matches the provided value.
                pub closed spec fn spec_new(v: $uty) -> $cty
                {
                    $cty{ i: Ghost(v as nat), v: Some(v) }
                }

                /// Creates a new `$cty` instance from a `$uty` value.
                /// Ensures the internal representation matches the provided value.
                #[verifier::when_used_as_spec(spec_new)]
                pub exec fn new(v: $uty) -> (result: Self)
                    ensures
                        result@ == v,
                {
                    Self{ i: Ghost(v as nat), v: Some(v) }
                }

                /// Creates a new `$cty` instance with an overflowed value.
                /// Requires the provided value to be greater than `$uty::MAX`.
                /// Ensures the internal representation matches the provided value.
                pub exec fn new_overflowed(Ghost(i): Ghost<int>) -> (result: Self)
                    requires
                        i > $uty::MAX,
                    ensures
                        result@ == i,
                {
                    Self{ i: Ghost(i as nat), v: None }
                }

                /// Checks if the `$cty` instance is overflowed.
                /// Returns true if the value is greater than `$uty::MAX`.
                pub open spec fn spec_is_overflowed(&self) -> bool
                {
                    self@ > $uty::MAX
                }

                /// Checks if the `$cty` instance is overflowed.
                /// Returns true if the value is greater than `$uty::MAX`.
                #[verifier::when_used_as_spec(spec_is_overflowed)]
                pub exec fn is_overflowed(&self) -> (result: bool)
                    ensures
                        result == self.spec_is_overflowed()
                {
                    proof { use_type_invariant(self) }
                    self.v.is_none()
                }

                /// Unwraps the `$cty` instance to get the `$uty` value.
                /// Requires the instance to not be overflowed.
                /// Ensures the returned value matches the internal representation.
                pub exec fn unwrap(&self) -> (result: $uty)
                    requires
                        !self.is_overflowed(),
                    ensures
                        result == self@,
                {
                    proof { use_type_invariant(self) }
                    self.v.unwrap()
                }

                /// Converts the `$cty` instance to an `Option<$uty>`.
                /// Ensures the returned option matches the internal representation.
                pub exec fn to_option(&self) -> (result: Option<$uty>)
                    ensures
                        match result {
                            Some(v) => self@ == v && v <= $uty::MAX,
                            None => self@ > $uty::MAX,
                        }
                {
                    proof { use_type_invariant(self); }
                    self.v
                }

                /// Adds a `$uty` value to the `$cty` instance.
                /// Ensures the resulting value matches the sum of
                /// the internal representation and the provided
                /// value.
                #[inline]
                pub exec fn add_value(&self, v2: $uty) -> (result: Self)
                    ensures
                        result@ == self@ + v2,
                {
                    proof {
                        use_type_invariant(&self);
                    }
                    let i: Ghost<nat> = Ghost((&self@ + v2) as nat);
                    match self.v {
                        Some(v1) => Self{ i, v: v1.checked_add(v2) },
                        None => Self{ i, v: None },
                    }
                }

                /// Adds another `$cty` instance to the current
                /// instance. Ensures the resulting value matches
                /// the sum of the internal representations of
                /// both instances.
                #[inline]
                pub exec fn add_checked(&self, v2: &$cty) -> (result: Self)
                    ensures
                        result@ == self@ + v2@,
                {
                    proof {
                        use_type_invariant(self);
                        use_type_invariant(v2);
                    }
                    match v2.v {
                        Some(n) => self.add_value(n),
                        None => {
                            let i: Ghost<nat> = Ghost((self@ + v2@) as nat);
                            Self{ i, v: None }
                        }
                    }
                }

                /// Multiplies the `$cty` instance by a `$uty`
                /// value. Ensures the resulting value matches the
                /// product of the internal representation and the
                /// provided value.
                #[inline]
                pub exec fn mul_value(&self, v2: $uty) -> (result: Self)
                    ensures
                        result@ == self@ as int * v2 as int,
                {
                    proof {
                        use_type_invariant(self);
                    }
                    let i: Ghost<nat> = Ghost((self@ * v2) as nat);
                    match self.v {
                        Some(n1) => Self{ i, v: n1.checked_mul(v2) },
                        None => {
                            if v2 == 0 {
                                assert(i@ == 0) by {
                                    lemma_mul_by_zero_is_zero(self@ as int);
                                }
                                Self{ i, v: Some(0) }
                            }
                            else {
                                assert(self@ * v2 >= self@ * 1 == self@) by {
                                    lemma_mul_inequality(1, v2 as int, self@ as int);
                                    lemma_mul_is_commutative(self@ as int, v2 as int);
                                }
                                Self{ i, v: None }
                            }
                        },
                    }
                }

                /// Multiplies the `$cty` instance by another `$cty` instance.
                /// Ensures the resulting value matches the product of the internal
                /// representations of both instances.
                #[inline]
                pub exec fn mul_checked(&self, v2: &Self) -> (result: Self)
                    ensures
                        result@ == self@ as int * v2@ as int,
                {
                    proof {
                        use_type_invariant(self);
                        use_type_invariant(v2);
                    }
                    let i: Ghost<nat> = Ghost((self@ * v2@) as nat);
                    match v2.v {
                        Some(n) => self.mul_value(n),
                        None => {
                            match self.v {
                                Some(n1) => {
                                    if n1 == 0 {
                                        assert(i@ == 0) by {
                                            lemma_mul_by_zero_is_zero(v2@ as int);
                                        }
                                        Self{ i, v: Some(0) }
                                    }
                                    else {
                                        assert(self@ * v2@ >= 1 * v2@ == v2@) by {
                                            lemma_mul_inequality(1, self@ as int, v2@ as int);
                                        }
                                        Self{ i, v: None }
                                    }
                                },
                                None => {
                                    assert(self@ * v2@ > $uty::MAX) by {
                                        lemma_mul_inequality(1, self@ as int, v2@ as int);
                                    }
                                    Self{ i, v: None }
                                },
                            }
                        }
                    }
                }
            }
        }
    };
}

checked_uint_gen!(u8, CheckedU8);
checked_uint_gen!(u16, CheckedU16);
checked_uint_gen!(u32, CheckedU32);
checked_uint_gen!(u64, CheckedU64);
checked_uint_gen!(u128, CheckedU128);
checked_uint_gen!(usize, CheckedUsize);