1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
use super::super::modes::*;
use super::super::prelude::*;
use super::*;
verus! {
// Too bad that `nat` and `int` are forbidden as the type of a const generic parameter
enum FractionalCarrier<T, const TOTAL: u64> {
Value { v: T, n: int },
Empty,
Invalid,
}
impl<T, const TOTAL: u64> FractionalCarrier<T, TOTAL> {
spec fn new(v: T) -> Self {
FractionalCarrier::Value { v: v, n: TOTAL as int }
}
}
impl<T, const TOTAL: u64> PCM for FractionalCarrier<T, TOTAL> {
closed spec fn valid(self) -> bool {
match self {
FractionalCarrier::Invalid => false,
FractionalCarrier::Empty => true,
FractionalCarrier::Value { v: v, n: n } => 0 < n <= TOTAL,
}
}
closed spec fn op(self, other: Self) -> Self {
match self {
FractionalCarrier::Invalid => FractionalCarrier::Invalid,
FractionalCarrier::Empty => other,
FractionalCarrier::Value { v: sv, n: sn } => match other {
FractionalCarrier::Invalid => FractionalCarrier::Invalid,
FractionalCarrier::Empty => self,
FractionalCarrier::Value { v: ov, n: on } => {
if sv != ov {
FractionalCarrier::Invalid
} else if sn <= 0 || on <= 0 {
FractionalCarrier::Invalid
} else {
FractionalCarrier::Value { v: sv, n: sn + on }
}
},
},
}
}
closed spec fn unit() -> Self {
FractionalCarrier::Empty
}
proof fn closed_under_incl(a: Self, b: Self) {
}
proof fn commutative(a: Self, b: Self) {
}
proof fn associative(a: Self, b: Self, c: Self) {
}
proof fn op_unit(a: Self) {
}
proof fn unit_valid() {
}
}
/** An implementation of a resource for fractional ownership of a ghost variable.
While most presentations of fractional permissions use the fractional total of 1,
with fractions being arbitrary rational numbers, this library represents fractional
permissions as integers, totalling to some compile-time constant `TOTAL`.
Thus, you can have any fractions from 1 up to `TOTAL`, and if you
have `TOTAL`, you can update the ghost variable.
If you just want to split the permission in half, you can also use the
[`GhostVar<T>`] and [`GhostVarAuth<T>`] library.
### Example
```
fn example_use() {
let tracked mut r = FracGhost::<u64, 3>::new(123);
assert(r@ == 123);
assert(r.frac() == 3);
let tracked r2 = r.split(2);
assert(r@ == 123);
assert(r2@ == 123);
assert(r.frac() == 1);
assert(r2.frac() == 2);
proof {
r.combine(r2);
r.update(456);
}
assert(r@ == 456);
assert(r.frac() == 3);
let tracked mut a = FracGhost::<u32>::new(5);
assert(a@ == 5);
assert(a.frac() == 2);
let tracked mut b = a.split(1);
assert(a.frac() == 1);
assert(b.frac() == 1);
proof {
a.update_with(&mut b, 123);
}
assert(a@ == 123);
proof {
a.combine(b);
a.update(6);
}
assert(a@ == 6);
}
```
*/
pub struct FracGhost<T, const TOTAL: u64 = 2> {
r: Resource<FractionalCarrier<T, TOTAL>>,
}
impl<T, const TOTAL: u64> FracGhost<T, TOTAL> {
#[verifier::type_invariant]
spec fn inv(self) -> bool {
self.r.value() is Value
}
pub closed spec fn id(self) -> Loc {
self.r.loc()
}
pub closed spec fn view(self) -> T {
self.r.value()->v
}
/// The fractional quantity of this permission. The "fraction" is represented as an integer,
/// out of `TOTAL`.
pub closed spec fn frac(self) -> int {
self.r.value()->n
}
pub open spec fn valid(self, id: Loc, frac: int) -> bool {
&&& self.id() == id
&&& self.frac() == frac
}
/// Allocate a new token with the given value. The returned token represents
/// the `TOTAL` quantity.
pub proof fn new(v: T) -> (tracked result: Self)
requires
TOTAL > 0,
ensures
result.frac() == TOTAL as int,
result@ == v,
{
let f = FractionalCarrier::<T, TOTAL>::new(v);
let tracked r = Resource::alloc(f);
Self { r }
}
/// Two tokens agree on their values.
pub proof fn agree(tracked self: &Self, tracked other: &Self)
requires
self.id() == other.id(),
ensures
self@ == other@,
{
use_type_invariant(self);
use_type_invariant(other);
let tracked joined = self.r.join_shared(&other.r);
joined.validate()
}
/// Take a token out of a mutable reference, leaving a meaningless token behind.
pub proof fn take(tracked &mut self) -> (tracked result: Self)
ensures
result == *old(self),
{
self.bounded();
let tracked mut mself = Self::dummy();
tracked_swap(self, &mut mself);
mself
}
/// Split one token into two tokens whose quantities sum to the original.
/// The returned token has quantity `n`; the new value of the input token has
/// quantity `old(self).frac() - n`.
pub proof fn split(tracked &mut self, n: int) -> (tracked result: Self)
requires
0 < n < old(self).frac(),
ensures
result.id() == self.id() == old(self).id(),
self@ == old(self)@,
result@ == old(self)@,
self.frac() + result.frac() == old(self).frac(),
result.frac() == n,
{
self.bounded();
let tracked mut mself = Self::dummy();
tracked_swap(self, &mut mself);
use_type_invariant(&mself);
let tracked (r1, r2) = mself.r.split(
FractionalCarrier::Value { v: mself.r.value()->v, n: mself.r.value()->n - n },
FractionalCarrier::Value { v: mself.r.value()->v, n: n },
);
self.r = r1;
Self { r: r2 }
}
/// Combine two tokens, summing their quantities.
pub proof fn combine(tracked &mut self, tracked other: Self)
requires
old(self).id() == other.id(),
ensures
self.id() == old(self).id(),
self@ == old(self)@,
self@ == other@,
self.frac() == old(self).frac() + other.frac(),
{
self.bounded();
let tracked mut mself = Self::dummy();
tracked_swap(self, &mut mself);
use_type_invariant(&mself);
use_type_invariant(&other);
let tracked mut r = mself.r;
r.validate_2(&other.r);
*self = Self { r: r.join(other.r) };
}
/// Update the value of the token. This requires having ALL the permissions,
/// i.e., a quantity total of `TOTAL`.
pub proof fn update(tracked &mut self, v: T)
requires
old(self).frac() == TOTAL,
ensures
self.id() == old(self).id(),
self@ == v,
self.frac() == old(self).frac(),
{
self.bounded();
let tracked mut mself = Self::dummy();
tracked_swap(self, &mut mself);
use_type_invariant(&mself);
let tracked mut r = mself.r;
let f = FractionalCarrier::<T, TOTAL>::Value { v: v, n: TOTAL as int };
*self = Self { r: r.update(f) };
}
/// Update the value of the token. This requires having ALL the permissions,
/// i.e., the tokens together must have a quantity total of `TOTAL`.
pub proof fn update_with(tracked &mut self, tracked other: &mut Self, v: T)
requires
old(self).id() == old(other).id(),
old(self).frac() + old(other).frac() == TOTAL,
ensures
self.id() == old(self).id(),
other.id() == old(other).id(),
self.frac() == old(self).frac(),
other.frac() == old(other).frac(),
old(self)@ == old(other)@,
self@ == v,
other@ == v,
{
let ghost other_frac = other.frac();
other.bounded();
let tracked mut xother = Self::dummy();
tracked_swap(other, &mut xother);
self.bounded();
self.combine(xother);
self.update(v);
let tracked mut xother = self.split(other_frac);
tracked_swap(other, &mut xother);
}
/// Allowed values for a token's quantity.
pub proof fn bounded(tracked &self)
ensures
0 < self.frac() <= TOTAL,
{
use_type_invariant(self);
self.r.validate()
}
/// Obtain an arbitrary token with no information about it.
/// Useful if you need a well-typed placeholder.
pub proof fn dummy() -> (tracked result: Self)
requires
TOTAL > 0,
{
Self::new(arbitrary())
}
}
/// See [`GhostVarAuth<T>`] for more information.
pub struct GhostVar<T> {
frac: FracGhost<T>,
}
impl<T> GhostVar<T> {
#[verifier::type_invariant]
spec fn inv(self) -> bool {
self.frac.frac() == 1
}
pub closed spec fn id(self) -> int {
self.frac.id()
}
pub closed spec fn view(self) -> T {
self.frac.view()
}
}
/** `GhostVarAuth<T>` is one half of a pair of tokens—the other being [`GhostVar<T>`].
These tokens each track a value, and they can only be allocated or updated together.
Thus, the pair of tokens always agree on the value, but they can be owned separately.
One possible application is to have a library which
keeps `GhostVarAuth<T>` and maintains an invariant relating the implementation's
abstract state to the value of `GhostVarAuth<T>`. Both `GhostVarAuth<T>`
and [`GhostVar<T>`] are needed together to update the value, but either one alone
allows reasoning about the current state.
These tokens can be implemented using fractional permissions, e.g., [`FracGhost`].
### Example
```
fn example() {
let tracked (mut gauth, mut gvar) = GhostVarAuth::<u64>::new(1);
assert(gauth@ == 1);
assert(gvar@ == 1);
proof {
gauth.update(&mut gvar, 2);
}
assert(gauth@ == 2);
assert(gvar@ == 2);
}
```
*/
pub struct GhostVarAuth<T> {
frac: FracGhost<T>,
}
impl<T> GhostVarAuth<T> {
#[verifier::type_invariant]
spec fn inv(self) -> bool {
self.frac.frac() == 1
}
pub closed spec fn id(self) -> int {
self.frac.id()
}
pub closed spec fn view(self) -> T {
self.frac.view()
}
/// Allocate a new pair of tokens, each initialized to the given value.
pub proof fn new(v: T) -> (tracked result: (GhostVarAuth<T>, GhostVar<T>))
ensures
result.0.id() == result.1.id(),
result.0@ == v,
result.1@ == v,
{
let tracked mut f = FracGhost::<T>::new(v);
let tracked v = GhostVar::<T> { frac: f.split(1) };
let tracked a = GhostVarAuth::<T> { frac: f };
(a, v)
}
/// Ensure that both tokens agree on the value.
pub proof fn agree(tracked &self, tracked v: &GhostVar<T>)
requires
self.id() == v.id(),
ensures
self@ == v@,
{
self.frac.agree(&v.frac)
}
/// Update the value on each token.
pub proof fn update(tracked &mut self, tracked v: &mut GhostVar<T>, new_val: T)
requires
old(self).id() == old(v).id(),
ensures
self.id() == old(self).id(),
v.id() == old(v).id(),
old(self)@ == old(v)@,
self@ == new_val,
v@ == new_val,
{
let tracked (mut ms, mut mv) = Self::new(new_val);
tracked_swap(self, &mut ms);
tracked_swap(v, &mut mv);
use_type_invariant(&ms);
use_type_invariant(&mv);
let tracked mut msfrac = ms.frac;
msfrac.combine(mv.frac);
msfrac.update(new_val);
let tracked mut nv = GhostVar::<T> { frac: msfrac.split(1) };
let tracked mut ns = Self { frac: msfrac };
tracked_swap(self, &mut ns);
tracked_swap(v, &mut nv);
}
}
} // verus!